Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 18(2): e0011966, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38381759

RESUMO

Schistosomiasis is one of the most devastating human diseases worldwide. The disease is caused by six species of Schistosoma blood fluke; five of which cause intestinal granulomatous inflammation and bleeding. The current diagnostic method is inaccurate and delayed, hence, biomarker identification using metabolomics has been applied. However, previous studies only investigated infection caused by one Schistosoma spp., leaving a gap in the use of biomarkers for other species. No study focused on understanding the progression of intestinal disease. Therefore, we aimed to identify early gut biomarkers of infection with three Schistosoma spp. and progression of intestinal pathology. We infected 3 groups of mice, 3 mice each, with Schistosoma mansoni, Schistosoma japonicum or Schistosoma mekongi and collected their feces before and 1, 2, 4 and 8 weeks after infection. Metabolites in feces were extracted and identified using mass spectrometer-based metabolomics. Metabolites were annotated and analyzed with XCMS bioinformatics tool and Metaboanalyst platform. From >36,000 features in all conditions, multivariate analysis found a distinct pattern at each time point for all species. Pathway analysis reported alteration of several lipid metabolism pathways as infection progressed. Disturbance of the glycosaminoglycan degradation pathway was found with the presence of parasite eggs, indicating involvement of this pathway in disease progression. Biomarkers were discovered using a combination of variable importance for projection score cut-off and receiver operating characteristic curve analysis. Five molecules met our criteria and were present in all three species: 25-hydroxyvitamin D2, 1α-hydroxy-2ß-(3-hydroxypropoxy) vitamin D3, Ganoderic acid Md, unidentified feature with m/z 455.3483, and unidentified feature with m/z 456.3516. These molecules were proposed as trans-genus biomarkers of early schistosomiasis. Our findings provide evidence for disease progression in intestinal schistosomiasis and potential biomarkers, which could be beneficial for early detection of this disease.


Assuntos
Schistosoma japonicum , Esquistossomose mansoni , Esquistossomose , Camundongos , Humanos , Animais , Esquistossomose mansoni/diagnóstico , Esquistossomose/diagnóstico , Esquistossomose/parasitologia , Biomarcadores , Diagnóstico Precoce , Progressão da Doença
2.
PLoS Negl Trop Dis ; 15(9): e0009706, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34473691

RESUMO

BACKGROUND: Mekong schistosomiasis is a parasitic disease caused by the blood-dwelling fluke Schistosoma mekongi. This disease contributes to human morbidity and mortality in the Mekong region, posing a public health threat to people in the area. Currently, praziquantel (PZQ) is the drug of choice for the treatment of Mekong schistosomiasis. However, the molecular mechanisms of PZQ action remain unclear, and Schistosoma PZQ resistance has been reported occasionally. Through this research, we aimed to use a metabolomic approach to identify the potentially altered metabolic pathways in S. mekongi associated with PZQ treatment. METHODOLOGY/PRINCIPAL FINDINGS: Adult stage S. mekongi were treated with 0, 20, 40, or 100 µg/mL PZQ in vitro. After an hour of exposure to PZQ, schistosome metabolites were extracted and studied with mass spectrometry. The metabolomic data for the treatment groups were analyzed with the XCMS online platform and compared with data for the no treatment group. After low, medium (IC50), and high doses of PZQ, we found changes in 1,007 metabolites, of which phosphatidylserine and anandamide were the major differential metabolites by multivariate and pairwise analysis. In the pathway analysis, arachidonic acid metabolism was found to be altered following PZQ treatment, indicating that this pathway may be affected by the drug and potentially considered as a novel target for anti-schistosomiasis drug development. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that arachidonic acid metabolism is a possible target in the parasiticidal effects of PZQ against S. mekongi. Identifying potential targets of the effective drug PZQ provides an interesting viewpoint for the discovery and development of new agents that could enhance the prevention and treatment of schistosomiasis.


Assuntos
Anti-Helmínticos/administração & dosagem , Ácido Araquidônico/metabolismo , Praziquantel/administração & dosagem , Schistosoma/efeitos dos fármacos , Schistosoma/metabolismo , Esquistossomose/tratamento farmacológico , Animais , Resistência a Medicamentos , Feminino , Humanos , Estágios do Ciclo de Vida/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Praziquantel/farmacologia , Schistosoma/genética , Schistosoma/crescimento & desenvolvimento , Esquistossomose/parasitologia
3.
Parasit Vectors ; 12(1): 383, 2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31362766

RESUMO

BACKGROUND: Schistosoma mekongi, which causes schistosomiasis in humans, is an important public health issue in Southeast Asia. Treatment with praziquantel is the primary method of control but emergence of praziquantel resistance requires the development of alternative drugs and vaccines. Calcium-dependent cysteine protease (calpain) is a novel vaccine candidate that has been studied in S. mansoni, S. japonicum, and protozoans including malaria, leishmania and trypanosomes. However, limited information is available on the properties and functions of calpain in other Schistosoma spp., including S. mekongi. In this study, we functionally characterized calpain 1 of S. mekongi (SmeCalp1). RESULTS: Calpain 1 of S. mekongi was obtained from transcriptomic analysis of S. mekongi; it had the highest expression level of all isoforms tested and was predominantly expressed in the adult male. SmeCalp1 cDNA is 2274 bp long and encodes 758 amino acids, with 85% to 90% homology with calpains in other Schistosoma species. Recombinant SmeCalp1 (rSmeCalp1), with a molecular weight of approximately 86.7 kDa, was expressed in bacteria and stimulated a marked antibody response in mice. Native SmeCalp1 was detected in crude worm extract and excretory-secretory product, and it was mainly localized in the tegument of the adult male; less signal was detected in the adult female worm. Thus, SmeCalp1 may play a role in surface membrane synthesis or host-parasite interaction. We assessed the protease activity of rSmeCalp1 and demonstrated that rSmeCalp1 could cleave the calpain substrate N-succinyl-Leu-Leu-Val-Tyr-7-amino-4-methylcoumarin, that was inhibited by calpain inhibitors (MDL28170 and E64c). Additionally, rSmeCalp1 could degrade the biological substrates fibronectin (blood clotting protein) and human complement C3, indicating important roles in the intravascular system and in host immune evasion. CONCLUSIONS: SmeCalp1 is expressed on the tegumental surface of the parasite and can cleave host defense molecules; thus, it might participate in growth, development and survival during the entire life-cycle of S. mekongi. Information on the properties and functions of SmeCalp1 reported herein will be advantageous in the development of effective drugs and vaccines against S. mekongi and other schistosomes.


Assuntos
Antígenos de Helmintos/imunologia , Calpaína/genética , Calpaína/metabolismo , Schistosoma/enzimologia , Animais , Antígenos de Helmintos/genética , Cumarínicos/metabolismo , Cisteína Proteases/genética , Cisteína Proteases/metabolismo , Feminino , Imunização , Masculino , Camundongos , Camundongos Endogâmicos ICR , Oligopeptídeos/metabolismo , Schistosoma/genética , Esquistossomose/imunologia , Esquistossomose/parasitologia , Análise de Sequência de DNA
4.
Artigo em Inglês | MEDLINE | ID: mdl-27086420

RESUMO

Puag-Haad is a traditional anthelmintic drug used to treat taeniasis in Thailand and Lao PDR. It is derived from the aqueous extract of the plant Artocarpus lakoocha. We investigated the in vitro anthelmintic properties of Puag-Haad against Schistosoma mansoni. Adult worms were incubated in M-199 medium containing 250, 500 and 750 µg/ml of Puag-Haad or praziquantel (PZQ) at a concentration of 175 µg/ml for 3, 6, 12 and 24 hours. The relative motility (RM value), survival index (SI) and tegument alterations seen under scanning electron microscope were assessed at each incubation time. The results showed the crude extract of A. lakoocha at a concentration of 250 µg/ml was more effective in causing damage than PZQ at a concentration of 175 µg/ml using RM and SI values. The major target organ affected by Puag-Haad was the tegument. The damage was greater at higher concentrations of the crude extract. It is likely tetrahydroxystilbene (THS), the main compound in Puag-Haad, caused the damage. THS could be a future candidate as a schistosomal drug. Further studies are needed to explore its mechanism, efficiency and safety in vivo.


Assuntos
Anti-Helmínticos/farmacologia , Extratos Vegetais/farmacologia , Schistosoma mansoni/efeitos dos fármacos , Esquistossomose mansoni/tratamento farmacológico , Estilbenos/farmacologia , Animais , Anti-Helmínticos/uso terapêutico , Laos , Extratos Vegetais/uso terapêutico , Praziquantel/uso terapêutico , Esquistossomose mansoni/prevenção & controle , Estilbenos/uso terapêutico , Teníase/tratamento farmacológico , Tailândia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA