Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 11(2)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35204071

RESUMO

In this work, we assess the potential of waste products of Phlegrean mandarin (Citrus reticulata Blanco), namely seeds and peel, to be reutilized as a source of bioactive compounds beneficial for the human diet. Starting from the evidence that the by-products of this specific cultivar are the most powerful sources of antioxidants compared to pulp, we have investigated if and how the bioactive compounds in peel and seeds may be affected by fruit ripening. Three stages of fruit ripening have been considered in our study: unripe fruits = UF, semi-ripe fruits = SRF, ripe fruits = RF. The overall results indicated that RF showed the highest concentration of antioxidants. Among fruit components, peel was the richest in total antioxidant capacity, total polyphenol content, total flavonoids, total chlorophylls and carotenoids, while seeds exhibited the highest concentration of total condensed tannins and ascorbic acid. The liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay indicates the occurrence, in peel extracts, of 28 phenolic compounds, mainly flavonoids (FLs); in seeds, 34 derivatives were present in the first stage (UF), which diminish to 24 during the ripening process. Our data indicated that the content of phytochemicals in citrus strongly varies among the fruit components and depends on the ripening stage. The higher antioxidant activity of peel and seeds, especially in RF, encourage a potential use of by-products of this specific citrus cultivar for industrial or pharmacological applications. However, to maximize the occurrence of desired bioactive compounds, it is important also to consider the ripening stage at which fruits must be collected.

2.
Antioxidants (Basel) ; 9(6)2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32545447

RESUMO

Peel, pulp and seed extracts of three mandarin varieties, namely Phlegraean mandarin (Citrus reticulata), Kumquat (Citrus japonica), and Clementine (Citrus clementina) were compared and characterised in terms of photosynthetic pigment content, total polyphenols amount, antioxidant activity and vitamin C to assess the amount of functional compounds for each cultivar. The highest polyphenols content was found in the Phlegraean mandarin, especially in peel and seeds, whereas Kumquat exhibited the highest polyphenols amount in the pulp. The antioxidant activity was higher in the peel of Phlegraean mandarin and clementine compared to Kumquat, which showed the highest value in the pulp. The antioxidant activity peaked in the seeds of Phlegraean mandarin. The vitamin C in the Phlegraean mandarin was the highest in all parts of the fruit, especially in the seeds. Total chlorophyll content was comparable in the peel of different cultivars, in the pulp the highest amount was found in clementine, whereas kumquat seeds showed the greatest values. As regards total carotenoids, peel and pulp of clementine exhibited higher values than the other two cultivars, whereas the kumquat seeds were the richest in carotenoids. Among the analysed cultivars Phlegraean mandarin may be considered the most promising as a source of polyphenols and antioxidants, compared to the clementine and Kumquat, especially for the functional molecules found in the seeds. Moreover, regardless of cultivars this study also highlights important properties in the parts of the fruit generally considered wastes.

3.
Microorganisms ; 8(3)2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32120894

RESUMO

The present study assesses the in vitro antibiofilm potential activity of extracts of wild Allium ursinum and Allium oschaninii. The active ingredients of the extracts were obtained with a technique named Naviglio (rapid solid-liquid dynamic extraction, RSLDE) which is based on an innovative and green solid-liquid extraction methodology. The extracts were tested against models of mono- and polymicrobial biofilm structures of clinically antibiotic-resistant pathogens, Klebsiella pneumoniae ATCC 10031 and Candida albicans ATCC 90028. Biofilms were studied using a static and a dynamic model (microtiter plates and a CDC reactor) on three different surfaces reproducing what happens on implantable medical devices. Antimicrobic activities were determined through minimum inhibitory concentration (MIC), while antibiofilm activity was assessed by minimum biofilm eradication concentration (MBEC) using a crystal violet (CV) biofilm assay and colony forming unit (CFU) counts. Results showed that both Allium extracts eradicated biofilms of the tested microorganisms well; biofilms on Teflon were more susceptible to extracts than those on polypropylene and polycarbonate, suggesting that when grown on a complex substrate, biofilms may be more tolerant to antibiotics. Our data provide significant advances on antibiotic susceptibility testing of biofilms grown on biologically relevant materials for future in vitro and in vivo applications.

4.
Nutrients ; 10(11)2018 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-30400278

RESUMO

Iron deficiency represents a widespread problem for a large part of the population, especially for women, and has received increasing attention in food/supplement research. The contraindications of the iron supplements commercially available (e.g., imbalances in the levels of other essential nutrients, low bioavailability, etc.) led us to search for a possible alternative. In the present work, a rapid and easy method to synthetize a solid iron (II) citrate complex from iron filings and citric acid was developed to serve, eventually, as a food supplement or additive. In order to state its atomic composition and purity, an assortment of analytical techniques was employed (e.g., combustion analysis, thermogravimetry, X-ray diffractometry, UV/Vis spectrophotometry, etc.). Results demonstrate that the synthesized crystalline solid corresponds to the formula FeC6H6O7∙H2O and, by consequence, contains exclusively iron (II), which is an advantage with respect to existing commercial products, because iron (II) is better absorbed than iron (III) (high bioavailability of iron).


Assuntos
Ácido Cítrico/química , Ferro da Dieta/síntese química , Ferro/química , Disponibilidade Biológica , Carbono/análise , Suplementos Nutricionais , Ferro da Dieta/farmacocinética , Modelos Teóricos , Termogravimetria , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA