Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 404(4): 1127-39, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22811061

RESUMO

To accurately determine the quantitative change of peptides and proteins in complex proteomics samples requires knowledge of how well each ion has been measured. The precision of each ions' calculated area is predicated on how uniquely it occupies its own space in m/z and elution time. Given an initial assumption that prior to the addition of the "heavy" label, all other ion detections are unique, which is arguably untrue, an initial attempt at quantifying the pervasiveness of ion interference events in a representative binary SILAC experiment was made by comparing the centered m/z and retention time of the ion detections from the "light" variant to its "heavy" companion. Ion interference rates were determined for LC-MS data acquired at mass resolving powers of 20 and 40 K with and without ion mobility separation activated. An ion interference event was recorded, if present in the companion dataset was an ion within ± its Δ mass at half-height, ±15 s of its apex retention time and if utilized by ±1 drift bin. Data are presented illustrating a definitive decrease in the frequency of ion interference events with each additional increase in selectivity of the analytical workflow. Regardless of whether the quantitative experiment is a composite of labeled samples or label free, how well each ion is measured can be determined given knowledge of the instruments mass resolving power across the entire m/z scale and the ion detection algorithm reporting both the centered m/z and Δ mass at half-height for each detected ion. Given these measurements, an effective resolution can be calculated and compared with the expected instrument performance value providing a purity score for the calculated ions' area based on mass resolution. Similarly, chromatographic and drift purity scores can be calculated. In these instances, the error associated to an ions' calculated peak area is estimated by examining the variation in each measured width to that of their respective experimental median. Detail will be disclosed as to how a final ion purity score was established, providing a first measure of how accurately each ions' area was determined as well as how precise the calculated quantitative change between labeled or unlabelled pairs were determined. Presented is how common ion interference events are in quantitative proteomics LC-MS experiments and how ion purity filters can be utilized to overcome and address them, providing ultimately more accurate and precise quantification results across a wider dynamic range.


Assuntos
Espectrometria de Massas/normas , Proteínas/química , Proteômica/normas , Algoritmos , Proteínas de Caenorhabditis elegans/química , Linhagem Celular Tumoral , Humanos , Espectrometria de Massas/métodos , Peptídeos/química , Proteômica/métodos , Proteínas de Saccharomyces cerevisiae/química
2.
Proteomics ; 11(6): 1189-211, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21298790

RESUMO

The computational simulation of complete proteomic data sets and their utility to validate detection and interpretation algorithms, to aid in the design of experiments and to assess protein and peptide false discovery rates is presented. The simulation software has been developed for emulating data originating from data-dependent and data-independent LC-MS workflows. Data from all types of commonly used hybrid mass spectrometers can be simulated. The algorithms are based on empirically derived physicochemical liquid and gas phase models for proteins and peptides. Sample composition in terms of complexity and dynamic range, as well as chromatographic, experimental and MS conditions, can be controlled and adjusted independently. The effect of on-column amounts, gradient length, mass resolution and ion mobility on search specificity will be demonstrated using tryptic peptides from human and yeast cellular lysates simulated over five orders of magnitude in dynamic range. Initial justification of the simulated data sets is achieved by comparing and contrasting the in silico simulated data to experimentally derived results from a 48 protein mixture, spanning a similar magnitude of five orders of magnitude. Additionally, experimental data from replicate and dilutions series experiments will be utilized to determine error rates at the peptide and protein level with respect to mass, area, retention and drift time. The data presented reveal a high degree of similarity at the ion detection, peptide and protein level when analyzed under similar conditions.


Assuntos
Proteômica/estatística & dados numéricos , Algoritmos , Cromatografia Líquida , Biologia Computacional , Simulação por Computador , Bases de Dados de Proteínas/estatística & dados numéricos , Células HeLa , Humanos , Peptídeos/isolamento & purificação , Proteínas/isolamento & purificação , Proteômica/normas , Controle de Qualidade , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Ferramenta de Busca , Espectrometria de Massas em Tandem/estatística & dados numéricos , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA