Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ind Eng Chem Res ; 62(40): 16198-16206, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37841415

RESUMO

Process analytical technologies are widely used to inform process control by identifying relationships between reagents and products. Here, we present a novel process analytical technology system for operando XAS on multiphase multicomponent synthesis processes based on the combination of a conventional lab-scale agitated reactor with a liquid-jet cell. The preparation of sulfonate-stabilized CaCO3 particles from polyphasic Ca(OH)2 dispersions was monitored in real time by Ca K-edge XAS to identify changes in Ca speciation in the bulk solution/dispersion as a function of time and process conditions. Linear combination fitting of the spectra quantitatively resolved composition changes from the initial conversion of Ca(OH)2 to the Ca(R-SO3)2 surfactant to the ultimate formation of nCaCO3·mCa(R- SO3)2 particles. The system provides a novel tool with strong chemical specificity for probing multiphase synthesis processes at a molecular level, providing an avenue to establishing the relationships between critical quality attributes of a process and the quality and performance of the product.

2.
Adv Mater ; 33(44): e2101576, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34494315

RESUMO

The pseudo-layered sulfide NiCr2 S4 exhibits outstanding electrochemical performance as anode material in sodium-ion batteries (SIBs). The Na storage mechanism is investigated by synchrotron-based X-ray scattering and absorption techniques as well as by electrochemical measurements. A very high reversible capacity in the 500th cycle of 489 mAh g-1 is observed at 2.0 A g-1 in the potential window 3.0-0.1 V. Full discharge includes irreversible generation of Ni0 and Cr0 nanoparticles embedded in nanocrystalline Na2 S yielding shortened diffusion lengths and predominantly surface-controlled charge storage. During charge, Ni0 and Cr0 are oxidized, Na2 S is consumed, and amorphous Ni and Cr sulfides are formed. Limiting the potential window to 3.0-0.3 V an unusual nickel extrusion sodium insertion mechanism occurs: Ni2+ is reduced to nanosized Ni0 domains, expelled from the host lattice, and is replaced by Na+ cations to form O3-type like NaCrS2 . Surprisingly, the discharge and charge processes comprise Na+ shuttling between highly crystalline NiCr2 S4 and NaCrS2 enabling a superior long-term stability for 3000 cycles. The results not only provide valuable insights for the electrochemistry of conversion materials but also extend the scope of layered electrode materials considering the reversible nickel extrusion sodium insertion reaction as new concept for SIBs.

3.
J Phys Condens Matter ; 33(34)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34098546

RESUMO

Data analysis methods for iron x-ray absorption spectroscopy can provide extensive information about the oxidation state and co-ordination of an Fe-species. However, the extent to which techniques developed using a single-phase iron sample may be applied to complex, mixed-phase samples formed under real-world conditions is not clear. This work uses a combination of pre-edge fitting and linear combination analysis to characterise the near edge region of the x-ray absorption spectrum (XANES) for a set of archaeological iron corrosion samples from a collection of cast iron cannon shot excavated from theMary Roseshipwreck and compares the data with phase compositions determined by synchrotron x-ray powder diffraction (SXPD). Archaeological powder and cross-section samples were compared to a library of iron standards and diffraction data. The XANES are consistent with previous observations that generation of the chlorinated phase akaganeite, ß-FeO(OH,Cl), occurs in those samples which have been removed form passive storage and subjected to active conservation. However, the results show that if any metallic species is present in the sample, the contribution from Fe(0) to the spectral region containing a pre-edge for oxidised iron-Fe(II) and Fe(III)-causes the analysis to be less effective and the conclusions unreliable. Consequently, while the pre-edge fitting methodology may be applied to a mixture of iron oxides or oxyhydroxides, the procedure is inappropriate for a mixed metal-oxide sample without the application of a complimentary technique, such as SXPD.

4.
Front Microbiol ; 12: 802991, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35087502

RESUMO

Limonitic layers of the regolith, which are often stockpiled as waste materials at laterite mines, commonly contain significant concentrations of valuable base metals, such as nickel, cobalt, and manganese. There is currently considerable demand for these transition metals, and this is projected to continue to increase (alongside their commodity values) during the next few decades, due in the most part to their use in battery and renewable technologies. Limonite bioprocessing is an emerging technology that often uses acidophilic prokaryotes to catalyse the oxidation of zero-valent sulphur coupled to the reduction of Fe (III) and Mn (IV) minerals, resulting in the release of target metals. Chromium-bearing minerals, such as chromite, where the metal is present as Cr (III), are widespread in laterite deposits. However, there are also reports that the more oxidised and more biotoxic form of this metal [Cr (VI)] may be present in some limonites, formed by the oxidation of Cr (III) by manganese (IV) oxides. Bioleaching experiments carried out in laboratory-scale reactors using limonites from a laterite mine in New Caledonia found that solid densities of ∼10% w/v resulted in complete inhibition of iron reduction by acidophiles, which is a critical reaction in the reductive dissolution process. Further investigations found this to be due to the release of Cr (VI) in the acidic liquors. X-ray absorption near edge structure (XANES) spectroscopy analysis of the limonites used found that between 3.1 and 8.0% of the total chromium in the three limonite samples used in experiments was present in the raw materials as Cr (VI). Microbial inhibition due to Cr (VI) could be eliminated either by adding limonite incrementally or by the addition of ferrous iron, which reduces Cr (VI) to less toxic Cr (III), resulting in rates of extraction of cobalt (the main target metal in the experiments) of >90%.

5.
Phys Chem Chem Phys ; 22(34): 18976-18988, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32648863

RESUMO

The chemical and structural nature of potassium compounds involved in catalytic soot oxidation have been studied by a combination of temperature programmed oxidation and operando potassium K-edge X-ray absorption spectroscopy experiments. These experiments are the first known operando studies using tender X-rays (∼3.6 keV) under high temperature oxidation reaction conditions. X-ray absorption near edge structure analysis of K2CO3/Al2O3 catalysts during heating shows that, at temperatures between 100 and 200 °C, potassium species undergo a structural change from an initial hydrated K2CO3·xH2O and KHCO3 mixture to well-defined K2CO3. As the catalyst is heated from 200 °C to 600 °C, a feature associated with multiple scattering shifts to lower energy, indicating increased K2CO3 dispersion, due to its mobility at high reaction temperature. This shift was noted to be greater in samples containing soot than in control experiments without soot and can be attributed to enhanced mobility of the K2CO3, due to the interaction between soot and potassium species. No potassium species except K2CO3 could be defined during reactions, which excludes a potential reaction mechanism in which carbonate ions are the active soot-oxidising species. Simulations of K-edge absorption near edge structures were performed to rationalise the observed changes seen. Findings showed that cluster size, unit cell distortions and variation in the distribution of potassium crystallographic sites influenced the simulated spectra of K2CO3. While further simulation studies are required for a more complete understanding, the current results support the hypothesis that changes in the local structure on dispersion can influence the observed spectra. Ex situ characterisation was carried out on the fresh and used catalyst, by X-ray diffraction and X-ray photoelectron spectroscopy, which indicated changes to the carbonate species, in line with the X-ray absorption spectroscopy experiments.

6.
ACS Earth Space Chem ; 3(11): 2437-2442, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-32064412

RESUMO

Understanding interactions between iron (oxyhydr)oxide nanoparticles and plutonium is essential to underpin technology to treat radioactive effluents, in cleanup of land contaminated with radionuclides, and to ensure the safe disposal of radioactive wastes. These interactions include a range of adsorption, precipitation, and incorporation processes. Here, we explore the mechanisms of plutonium sequestration during ferrihydrite precipitation from an acidic solution. The initial 1 M HNO3 solution with Fe(III)(aq) and 242Pu(IV)(aq) underwent controlled hydrolysis via the addition of NaOH to pH 9. The majority of Fe(III)(aq) and Pu(IV)(aq) was removed from solution between pH 2 and 3 during ferrihydrite formation. Analysis of Pu-ferrihydrite by extended X-ray absorption fine structure (EXAFS) spectroscopy showed that Pu(IV) formed an inner-sphere tetradentate complex on the ferrihydrite surface, with minor amounts of PuO2 present. Best fits to the EXAFS data collected from Pu-ferrihydrite samples aged for 2 and 6 months showed no statistically significant change in the Pu(IV)-Fe oxyhydroxide surface complex despite the ferrihydrite undergoing extensive recrystallization to hematite. This suggests the Pu remains strongly sorbed to the iron (oxyhydr)oxide surface and could be retained over extended time periods.

7.
Nat Commun ; 9(1): 935, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29507285

RESUMO

The carbon-carbon coupling via electrochemical reduction of carbon dioxide represents the biggest challenge for using this route as platform for chemicals synthesis. Here we show that nanostructured iron (III) oxyhydroxide on nitrogen-doped carbon enables high Faraday efficiency (97.4%) and selectivity to acetic acid (61%) at very-low potential (-0.5 V vs silver/silver chloride). Using a combination of electron microscopy, operando X-ray spectroscopy techniques and density functional theory simulations, we correlate the activity to acetic acid at this potential to the formation of nitrogen-coordinated iron (II) sites as single atoms or polyatomic species at the interface between iron oxyhydroxide and the nitrogen-doped carbon. The evolution of hydrogen is correlated to the formation of metallic iron and observed as dominant reaction path over iron oxyhydroxide on oxygen-doped carbon in the overall range of negative potential investigated, whereas over iron oxyhydroxide on nitrogen-doped carbon it becomes important only at more negative potentials.

8.
Angew Chem Int Ed Engl ; 57(25): 7390-7395, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29517157

RESUMO

Post-excavation iron corrosion may be accelerated by the presence of Cl- , leading to conservation methods designed to remove Cl. This study exploits a unique opportunity to assess 35 years of conservation applied to cast-iron cannon shot excavated from the Mary Rose. A combination of synchrotron X-ray powder diffraction (SXPD), absorption spectroscopy (XAS), and fluorescence (XRF) mapping have been used to characterise the impact of conservation on the crystalline corrosion products, chlorine distribution, and speciation. The chlorinated phase akaganeite, ß-FeO(OH,Cl), was found on shot washed in corrosion inhibitor Hostacor IT with or without an additional reduction stage. No chlorinated phases were observed on the surface of shot stored in sodium sesquicarbonate (Na2 CO3 /NaHCO3 ); however, hibbingite, ß-Fe2 (OH)3 Cl, was present in metal pores. It is proposed that surface ß-FeO(OH,Cl) formed in the early stages of active conservation owing to oxidation of ß-Fe2 (OH)3 Cl at near-neutral pH.

9.
Sci Rep ; 7: 40966, 2017 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-28112202

RESUMO

Ruthenium complexes are promising candidates for anticancer agents, especially NKP-1339 (sodium trans-[tetrachloridobis(1H-indazole)ruthenate(III)]), which is on the edge to clinical applications. The anticancer mechanism seems to be tightly linked to the redox chemistry but despite progress in human clinical trials the in vivo Ru oxidation state and the coordination of Ru remains unclear. The Ru-based anticancer drug NKP-1339 was studied applying XANES (Cl K- and Ru L2,3-edges) in tumor, kidney and liver tissue of a SW480 bearing mouse. Based on coordination charge and 3D XANES plots containing a series of model compounds as well as pre-edge analysis of the ligand Cl K-edge it is suggested that NKP-1339 remains in its +III oxidation state after 24 hours and at least one of the four chlorido ligands remain covalently bound to the Ru ion showing a biotransformation from RuIIIN2Cl4 to RuIIIClx(N/O)6-x (X = 1 or 2).


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias do Colo/tratamento farmacológico , Complexos de Coordenação/administração & dosagem , Rim/química , Fígado/química , Neoplasias/química , Animais , Antineoplásicos/análise , Complexos de Coordenação/análise , Modelos Animais de Doenças , Humanos , Camundongos , Espectroscopia por Absorção de Raios X
10.
Phys Chem Chem Phys ; 17(7): 5155-71, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25601325

RESUMO

The interaction of the widely used anticancer drug cisplatin with DNA bases was studied by EXAFS and vibrational spectroscopy (FTIR, Raman and INS), coupled with DFT/plane-wave calculations. Detailed information was obtained on the local atomic structure around the Pt(ii) centre, both in the cisplatin-purine (adenine and guanine) and cisplatin-glutathione adducts. Simultaneous neutron and Raman scattering experiments allowed us to obtain a reliable and definite picture of this cisplatin interplay with its main pharmacological target (DNA), at the molecular level. The vibrational experimental spectra were fully assigned in the light of the calculated pattern for the most favoured geometry of each drug-purine adduct, and cisplatin's preference for guanine (G) relative to adenine (A) within the DNA double helix was experimentally verified: a complete N by S substitution in the metal coordination sphere was only observed for [cDDP-A2], reflecting a somewhat weaker Pt-A binding relative to Pt-G. The role of glutathione on the drug's pharmacokinetics, as well as on the stability of platinated DNA adducts, was evaluated as this is the basis for glutathione-mediated intracellular drug scavenging and in vivo resistance to Pt-based anticancer drugs. Spectroscopic evidence of the metal's preference for glutathione's sulfur over purine's nitrogen binding sites was gathered, at least two sulfur atoms being detected in platinum's first coordination sphere.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Adutos de DNA/química , Glutationa/química , Adenina/química , Antineoplásicos/química , Cisplatino/química , Guanina/química , Modelos Moleculares , Conformação de Ácido Nucleico/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Espectroscopia por Absorção de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA