Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Adv Med Sci ; 69(1): 198-207, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38555007

RESUMO

We present the results of an association study involving hospitalized coronavirus disease 2019 (COVID-19) patients with a clinical background during the 3rd pandemic wave of COVID-19 in Slovakia. Seventeen single nucleotide variants (SNVs) in the eleven most relevant genes, according to the COVID-19 Host Genetics Initiative, were investigated. Our study confirms the validity of the influence of LZTFL1 and 2'-5'-oligoadenylate synthetase (OAS)1/OAS3 genetic variants on the severity of COVID-19. For two LZTFL1 SNVs in complete linkage disequilibrium, rs17713054 and rs73064425, the odds ratios of baseline allelic associations and logistic regressions (LR) adjusted for age and sex ranged in the four tested designs from 2.04 to 2.41 and from 2.05 to 3.98, respectively. The OAS1/OAS3 haplotype 'gttg' carrying a functional allele G of splice-acceptor variant rs10774671 manifested its protective function in the Delta pandemic wave. Significant baseline allelic associations of two DPP9 variants in all tested designs and two IFNAR2 variants in the Omicron pandemic wave were not confirmed by adjusted LR. Nevertheless, adjusted LR showed significant associations of NOTCH4 rs3131294 and TYK2 rs2304256 variants with severity of COVID-19. Hospitalized patients' reported comorbidities were not correlated with genetic variants, except for obesity, smoking (IFNAR2), and hypertension (NOTCH4). The results of our study suggest that host genetic variations have an impact on the severity and duration of acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Considering the differences in allelic associations between pandemic waves, they support the hypothesis that every new SARS-CoV-2 variant may modify the host immune response by reconfiguring involved pathways.


Assuntos
COVID-19 , Polimorfismo de Nucleotídeo Único , SARS-CoV-2 , Humanos , COVID-19/genética , COVID-19/epidemiologia , COVID-19/virologia , Eslováquia/epidemiologia , Feminino , Masculino , SARS-CoV-2/genética , Pessoa de Meia-Idade , Idoso , Estudos de Coortes , Adulto , Predisposição Genética para Doença , 2',5'-Oligoadenilato Sintetase/genética
2.
Gen Physiol Biophys ; 42(1): 77-85, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36705307

RESUMO

Parkinson's disease (PD) is an oxidative stress-linked neurodegenerative disorder, with the highest prevalence among seniors. The objective of this study were: (1) to analyse levels of following oxidative stress parameters: total antioxidant capacity (TAC), uric acid (UA), total glutathione (tGSH), bilirubin (Bil) and albumin (Alb), in blood of PD patients and healthy controls; (2) to find possible associations of examined oxidative stress parameters with PD subtypes and levodopa treatment status; and (3) to evaluate power and relevance of the aforementioned oxidative stress parameter for the prediction of onset and progression of PD by utilizing Random Forest machine learning (RFML). Oxidative stress parameters were determined in 125 PD patients and 55 healthy controls. Evaluated with frequentist statistics, our data revealed that UA is the only oxidative stress parameter associated with PD. However, when the PD cohort was divided in gender-dependent manner, tGSH and Bil were also significantly associated with PD in subgroup of female patients. RFML rendered no predictive power of any of the tested oxidative stress parameters in respect to PD, its subtypes, and/or status of levodopa treatment. In conclusion, despite the positive association of UA with PD (in complete cohort of PD patients) and of tGSH and Bil with PD but only in female patients, these oxidative stress parameters are of no use in clinical practice due to the lack of the predictive/diagnostic power.


Assuntos
Doença de Parkinson , Humanos , Feminino , Doença de Parkinson/tratamento farmacológico , Levodopa/uso terapêutico , Antioxidantes/metabolismo , Estresse Oxidativo , Ácido Úrico , Glutationa
3.
Eur J Pharmacol ; 902: 174073, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33798597

RESUMO

The aim of our work was to study effect of antidepressant imipramine on both thapsigargin- and tunicamycin-induced ER stress and mitochondrial dysfunction in neuroblastoma SH-SY5Y cells. ER stress in SH-SY5Y cells was induced by either tunicamycin or thapsigargin in the presence or absence of imipramine. Cell viability was tested by the MTT assay. Splicing of XBP1 mRNA was studied by RT-PCR. Finally, expression of Hrd1 and Hsp60 was determined by Western blot analysis. Our findings provide evidence that at high concentrations imipramine potentiates ER stress-induced death of SH-SY5Y cells. The effect of imipramine on ER stress-induced death of SH-SY5Y cells was stronger in combination of imipramine with thapsigargin. In addition, we have found that treatment of SH-SY5Y cells with imipramine in combination of either thapsigargin or tunicamycin is associated with the alteration of ER stress-induced IRE1α-XBP1 signalling. Despite potentiation of ER stress-induced XBP1 splicing, imipramine suppresses both thapsigargin- and tunicamycin-induced expression of Hrd1. Finally, imipramine in combination with thapsigargin, but not tunicamycin, aggravates ER stress-induced mitochondrial dysfunction without significant impact on intracellular mitochondrial content as indicated by the unaltered expression of Hsp60. Our results indicate the possibility that chronic treatment with imipramine might be associated with a higher risk of development and progression of neurodegenerative disorders, in particular those allied with ER stress and mitochondrial dysfunction like Parkinson's and Alzheimer's disease.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Imipramina/farmacologia , Mitocôndrias/efeitos dos fármacos , Neuroblastoma/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Endorribonucleases/metabolismo , Humanos , Neuroblastoma/patologia , Doenças Neurodegenerativas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Splicing de RNA/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Tapsigargina/toxicidade , Tunicamicina/toxicidade , Ubiquitina-Proteína Ligases/metabolismo , Proteína 1 de Ligação a X-Box/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA