Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Opt Express ; 15(6): 3507-3522, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38867800

RESUMO

Advancements in optical imaging techniques have revolutionized the field of biomedical research, allowing for the comprehensive characterization of tissues and their underlying biological processes. Yet, there is still a lack of tools to provide quantitative and objective characterization of tissues that can aid clinical assessment in vivo to enhance diagnostic and therapeutic interventions. Here, we present a clinically viable fiber-based imaging system combining time-resolved spectrofluorimetry and reflectance spectroscopy to achieve fast multiparametric macroscopic characterization of tissues. An essential feature of the setup is its ability to perform dual wavelength excitation in combination with recording time-resolved fluorescence data in several spectral intervals. Initial validation of this bimodal system was carried out in freshly resected human colorectal cancer specimens, where we demonstrated the ability of the system to differentiate normal from malignant tissues based on their autofluorescence and reflectance properties. To further highlight the complementarity of autofluorescence and reflectance measurements and demonstrate viability in a clinically relevant scenario, we also collected in vivo data from the skin of a volunteer. Altogether, integration of these modalities in a single platform can offer multidimensional characterization of tissues, thus facilitating a deeper understanding of biological processes and potentially advancing diagnostic and therapeutic approaches in various medical applications.

2.
Biomed Opt Express ; 14(3): 1256-1275, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36950232

RESUMO

Identification of neoplastic and dysplastic brain tissues is of paramount importance for improving the outcomes of neurosurgical procedures. This study explores the combined application of fluorescence, Raman and diffuse reflectance spectroscopies for the detection and classification of brain tumor and cortical dysplasia with a label-free modality. Multivariate analysis was performed to evaluate classification accuracies of these techniques-employed both in individual and multimodal configuration-obtaining high sensitivity and specificity. In particular, the proposed multimodal approach allowed discriminating tumor/dysplastic tissues against control tissue with 91%/86% sensitivity and 100%/100% specificity, respectively, whereas tumor from dysplastic tissues were discriminated with 89% sensitivity and 86% specificity. Hence, multimodal optical spectroscopy allows reliably differentiating these pathologies using a non-invasive, label-free approach that is faster than the gold standard technique and does not require any tissue processing, offering the potential for the clinical translation of the technology.

3.
J Pathol Inform ; 13: 100012, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35223136

RESUMO

Colorectal cancer presents one of the most elevated incidences of cancer worldwide. Colonoscopy relies on histopathology analysis of hematoxylin-eosin (H&E) images of the removed tissue. Novel techniques such as multi-photon microscopy (MPM) show promising results for performing real-time optical biopsies. However, clinicians are not used to this imaging modality and correlation between MPM and H&E information is not clear. The objective of this paper is to describe and make publicly available an extensive dataset of fully co-registered H&E and MPM images that allows the research community to analyze the relationship between MPM and H&E histopathological images and the effect of the semantic gap that prevents clinicians from correctly diagnosing MPM images. The dataset provides a fully scanned tissue images at 10x optical resolution (0.5 µm/px) from 50 samples of lesions obtained by colonoscopies and colectomies. Diagnostics capabilities of TPF and H&E images were compared. Additionally, TPF tiles were virtually stained into H&E images by means of a deep-learning model. A panel of 5 expert pathologists evaluated the different modalities into three classes (healthy, adenoma/hyperplastic, and adenocarcinoma). Results showed that the performance of the pathologists over MPM images was 65% of the H&E performance while the virtual staining method achieved 90%. MPM imaging can provide appropriate information for diagnosing colorectal cancer without the need for H&E staining. However, the existing semantic gap among modalities needs to be corrected.

4.
J Pathol Inform ; 12: 27, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34447607

RESUMO

BACKGROUND: Colorectal cancer has a high incidence rate worldwide, with over 1.8 million new cases and 880,792 deaths in 2018. Fortunately, its early detection significantly increases the survival rate, reaching a cure rate of 90% when diagnosed at a localized stage. Colonoscopy is the gold standard technique for detection and removal of colorectal lesions with potential to evolve into cancer. When polyps are found in a patient, the current procedure is their complete removal. However, in this process, gastroenterologists cannot assure complete resection and clean margins which are given by the histopathology analysis of the removed tissue, which is performed at laboratory. AIMS: In this paper, we demonstrate the capabilities of multiphoton microscopy (MPM) technology to provide imaging biomarkers that can be extracted by deep learning techniques to identify malignant neoplastic colon lesions and distinguish them from healthy, hyperplastic, or benign neoplastic tissue, without the need for histopathological staining. MATERIALS AND METHODS: To this end, we present a novel MPM public dataset containing 14,712 images obtained from 42 patients and grouped into 2 classes. A convolutional neural network is trained on this dataset and a spatially coherent predictions scheme is applied for performance improvement. RESULTS: We obtained a sensitivity of 0.8228 ± 0.1575 and a specificity of 0.9114 ± 0.0814 on detecting malignant neoplastic lesions. We also validated this approach to estimate the self-confidence of the network on its own predictions, obtaining a mean sensitivity of 0.8697 and a mean specificity of 0.9524 with the 18.67% of the images classified as uncertain. CONCLUSIONS: This work lays the foundations for performing in vivo optical colon biopsies by combining this novel imaging technology together with deep learning algorithms, hence avoiding unnecessary polyp resection and allowing in situ diagnosis assessment.

5.
Urologia ; 88(4): 306-314, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33789562

RESUMO

OBJECTIVE: To prove the feasibility of Multimodal Fiber Optic Spectroscopy (MFOS) analysis in bladder cancer (BCa) detection, grading, and staging. MATERIALS AND METHODS: Bladder specimens from patients underwent TURBT or TURP were recorded and analyzed with MFOS within 30 min from excision. In detail, our MFOS combined fluorescence, Raman spectroscopy, and diffuse reflectance. We used these optical techniques to collect spectra from bladder biopsies, then we compared the obtained results to gold standard pathological analysis. Finally, we developed a classification algorithm based on principal component analysis-linear discriminant analysis. RESULTS: A total of 169 specimens were collected and analyzed from 114 patients, 40 (23.7%) healthy (from TURP), and 129 (76.3%) with BCa. BCa specimens were divided according to their grade-34 (26.4%) low grade (LG) and 95 (73.6%) high grade (HG) BCa-and stage-64 (49.6%) Ta, 45 (34.9%) T1, and 20 (15.5%) T2. MFOS-based classification algorithm correctly discriminated healthy versus BCa with 90% accuracy, HG versus LG with 83% accuracy. Furthermore, it assessed tumor stage with 75% accuracy for Ta versus T1, 85% for T1 versus T2, and 86% for Ta versus T2. CONCLUSIONS: Our preliminary results suggest that MFOS could be a reliable, fast, and label-free tool for BCa assessment, providing also grading and staging information. This technique could be applied in future for in vivo inspection as well as of ex vivo tissue biopsies. Thus, MFOS might improve urothelial cancer management. Further studies are required.


Assuntos
Neoplasias da Bexiga Urinária , Estudos de Viabilidade , Humanos , Gradação de Tumores , Estadiamento de Neoplasias , Análise Espectral , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/cirurgia
6.
J Biophotonics ; 14(3): e202000365, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33305912

RESUMO

Malignant melanoma is an aggressive form of skin cancer, which develops from the genetic mutations of melanocytes - the most frequent involving BRAF and NRAS genes. The choice and the effectiveness of the therapeutic approach depend on tumour mutation; therefore, its assessment is of paramount importance. Current methods for mutation analysis are destructive and take a long time; instead, Raman spectroscopy could provide a fast, label-free and non-destructive alternative. In this study, confocal Raman microscopy has been used for examining three in vitro melanoma cell lines, harbouring different molecular profiles and, in particular, specific BRAF and NRAS driver mutations. The molecular information obtained from Raman spectra has served for developing two alternative classification algorithms based on linear discriminant analysis and artificial neural network. Both methods provide high accuracy (≥90%) in discriminating all cell types, suggesting that Raman spectroscopy may be an effective tool for detecting molecular differences between melanoma mutations.


Assuntos
Melanoma , Neoplasias Cutâneas , Linhagem Celular , Humanos , Melanócitos , Melanoma/genética , Mutação , Neoplasias Cutâneas/genética , Aprendizado de Máquina Supervisionado
7.
Neurophotonics ; 7(4): 045010, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33274251

RESUMO

Significance: Glioblastoma (GBM) is the most common and aggressive malignant brain tumor in adults. With a worldwide incidence rate of 2 to 3 per 100,000 people, it accounts for more than 60% of all brain cancers; currently, its 5-year survival rate is < 5 % . GBM treatment relies mainly on surgical resection. In this framework, multimodal optical spectroscopy could provide a fast and label-free tool for improving tumor detection and guiding the removal of diseased tissues. Aim: Discriminating healthy brain from GBM tissues in an animal model through the combination of Raman and reflectance spectroscopies. Approach: EGFP-GL261 cells were injected into the brains of eight laboratory mice for inducing murine GBM in these animals. A multimodal optical fiber probe combining fluorescence, Raman, and reflectance spectroscopy was used to localize in vivo healthy and tumor brain areas and to collect their spectral information. Results: Tumor areas were localized through the detection of EGFP fluorescence emission. Then, Raman and reflectance spectra were collected from healthy and tumor tissues, and later analyzed through principal component analysis and linear discriminant analysis in order to develop a classification algorithm. Raman and reflectance spectra resulted in 92% and 93% classification accuracy, respectively. Combining together these techniques allowed improving the discrimination between healthy and tumor tissues up to 97%. Conclusions: These preliminary results demonstrate the potential of multimodal fiber-probe spectroscopy for in vivo label-free detection and delineation of brain tumors, and thus represent an additional, encouraging step toward clinical translation and deployment of fiber-probe spectroscopy.

8.
J Biophotonics ; 13(8): e202000159, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32472568

RESUMO

Several specific alterations of the extracellular matrix can be considered a distinctive hallmark of cancer. In particular, a different morphology of the collagen scaffold is frequently found within the peritumoural environment. In this study, we report about a significant difference in the ultrastructural organization of collagen at the supra-molecular level between the perilesional scaffold and the tumour area in human breast carcinoma samples. In particular, we demonstrated that polarization-resolved second-harmonic generation (P-SHG) microscopy is able to link the altered collagen architecture at the ultrastructural level found in perilesional tissue with a different organization of collagen fibrils at the molecular level.


Assuntos
Neoplasias da Mama , Microscopia de Geração do Segundo Harmônico , Colágeno , Matriz Extracelular , Feminino , Humanos
10.
J Biophotonics ; 12(11): e201900087, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31343832

RESUMO

Urothelial carcinoma (UC) is the most common bladder tumour. Proper treatment requires tumour resection for diagnosing its grade (aggressiveness) and stage (invasiveness). White-light cystoscopy and histopathological examination are the gold standard procedures for clinical and histopathological diagnostics, respectively. However, cystoscopy is limited in terms of specificity, histology requires long tissue processing, both procedures rely on operator's experience. Multimodal optical spectroscopy can provide a powerful tool for detecting, staging and grading bladder tumours in a fast, reliable and label-free modality. In this study, we collected fluorescence, Raman and reflectance spectra from 50 biopsies obtained from 32 patients undergoing transurethral resection of bladder tumour using a multimodal fibre-probe. Principal component analysis allowed distinguishing normal from pathological tissues, as well as discriminating tumour stages and grades. Each individual spectroscopic technique provided high specificity and sensitivity in classifying all tissues; however, a multimodal approach resulted in a considerable increase in diagnostic accuracy (≥95%), which is of paramount importance for tumour grading and staging. The presented method offers the potential for being applied in cystoscopy and for providing an automated diagnosis of UC at the clinical level, with an improvement with respect to current state-of-the-art procedures.


Assuntos
Análise Espectral , Neoplasias da Bexiga Urinária/patologia , Urotélio/patologia , Adulto , Biópsia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Neoplasias da Bexiga Urinária/cirurgia
11.
Methods Protoc ; 2(2)2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31226732

RESUMO

Modern optics offers several label-free microscopic and spectroscopic solutions which are useful for both imaging and pathological assessments of biological tissues. The possibility to obtain similar morphological and biochemical information with fast and label-free techniques is highly desirable, but no single optical modality is capable of obtaining all of the information provided by histological and immunohistochemical analyses. Integrated multimodal imaging offers the possibility of integrating morphological with functional-chemical information in a label-free modality, complementing the simple observation with multiple specific contrast mechanisms. Here, we developed a custom laser-scanning microscopic platform that combines confocal Raman spectroscopy with multimodal non-linear imaging, including Coherent Anti-Stokes Raman Scattering, Second-Harmonic Generation, Two-Photon Excited Fluorescence, and Fluorescence Lifetime Imaging Microscopy. The experimental apparatus is capable of high-resolution morphological imaging of the specimen, while also providing specific information about molecular organization, functional behavior, and molecular fingerprint. The system was successfully tested in the analysis of ex vivo tissues affected by urothelial carcinoma and by atherosclerosis, allowing us to multimodally characterize of the investigated specimen. Our results show a proof-of-principle demonstrating the potential of the presented multimodal approach, which could serve in a wide range of biological and biomedical applications.

12.
J Colloid Interface Sci ; 538: 449-461, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30537658

RESUMO

Major obstacles to the successful treatment of gliolastoma multiforme are mostly related to the acquired resistance to chemotherapy drugs and, after surgery, to the cancer recurrence in correspondence of residual microscopic foci. As innovative anticancer approach, low-intensity electric stimulation represents a physical treatment able to reduce multidrug resistance of cancer and to induce remarkable anti-proliferative effects by interfering with Ca2+ and K+ homeostasis and by affecting the organization of the mitotic spindles. However, to preserve healthy cells, it is utterly important to direct the electric stimuli only to malignant cells. In this work, we propose a nanotechnological approach based on ultrasound-sensitive piezoelectric nanoparticles to remotely deliver electric stimulations to glioblastoma cells. Barium titanate nanoparticles (BTNPs) have been functionalized with an antibody against the transferrin receptor (TfR) in order to obtain the dual targeting of blood-brain barrier and of glioblastoma cells. The remote ultrasound-mediated piezo-stimulation allowed to significantly reduce in vitro the proliferation of glioblastoma cells and, when combined with a sub-toxic concentration of temozolomide, induced an increased sensitivity to the chemotherapy treatment and remarkable anti-proliferative and pro-apoptotic effects.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Compostos de Bário/química , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Nanopartículas/química , Temozolomida/farmacologia , Titânio/química , Antineoplásicos Alquilantes/química , Apoptose/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Neoplasias Encefálicas/patologia , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Glioblastoma/patologia , Humanos , Nanotecnologia , Temozolomida/química , Células Tumorais Cultivadas
13.
J Biophotonics ; 10(6-7): 896-904, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28067998

RESUMO

We evaluated the diagnostic capability of a multimodal spectroscopic approach for classifying normal brain tissue and epileptogenic focal cortical dysplasia in children. We employed fluorescence spectroscopy at two excitation wavelengths (378 nm and 445 nm) and Raman spectroscopy (at 785 nm excitation) for acquiring fluorescence and Raman spectra from 10 normal brains, 16 focal cortical dysplasia specimens and 1 cortical tuber tissue sites using a custom-built multimodal optical point spectroscopic system. We used principal component analysis combined with leave-one-sample-out-cross-validation for tissue classification. The study resulted in 100% sensitivity and 90% specificity using the information obtained from fluorescence at two distinct wavelengths and Raman spectroscopy for discriminating normal brain tissue and focal cortical dysplasia. Our results demonstrate that this methodology has the potential to be applied clinically for the detection of focal cortical dysplasia and can help to improve as precise as possible surgical resection of the dysplastic tissue during surgery for epilepsy. Schematic draw of the experimental setup used for fiber-probe spectroscopy.


Assuntos
Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Imagem Multimodal , Espectrometria de Fluorescência , Análise Espectral Raman , Criança , Humanos , Análise de Componente Principal
14.
J Biophotonics ; 9(6): 645-55, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26756549

RESUMO

The healing process of superficial skin wounds treated with a blue-LED haemostatic device is studied. Four mechanical abrasions are produced on the back of 10 Sprague Dawley rats: two are treated with the blue-LED device, while the other two are left to naturally recover. Visual observations, non-linear microscopic imaging, as well as histology and immunofluorescence analyses are performed 8 days after the treatment, demonstrating no adverse reactions neither thermal damages in both abraded areas and surrounding tissue. A faster healing process and a better-recovered skin morphology are observed: the treated wounds show a reduced inflammatory response and a higher collagen content. Blue LED induced photothermal effect on superficial abrasions.


Assuntos
Hemostáticos/uso terapêutico , Luz , Fototerapia , Pele/lesões , Cicatrização , Animais , Ratos , Ratos Sprague-Dawley
15.
J Biophotonics ; 7(11-12): 914-25, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24339127

RESUMO

Non-linear optical microscopy is becoming popular as a non-invasive in vivo imaging modality in dermatology. In this study, combined TPF and SHG microscopy were used to monitor collagen remodelling in vivo after micro-ablative fractional laser resurfacing. Papillary dermis of living subjects, covering a wide age range, was imaged immediately before and forty days after treatment. A qualitative visual examination of acquired images demonstrated an age-dependent remodelling effect on collagen. Additional quantitative analysis of new collagen production was performed by means of two image analysis methods. A higher increase in SHG to TPF ratio, corresponding to a stronger treatment effectiveness, was found in older subjects, whereas the effect was found to be negligible in young, and minimal in middle age subjects. Analysis of collagen images also showed a dependence of the treatment effectiveness with age but with controversial results. While the diagnostic potential of in vivo multiphoton microscopy has already been demonstrated for skin cancer and other skin diseases, here we first successfully explore its potential use for a non-invasive follow-up of a laser-based treatment.


Assuntos
Colágeno/química , Microscopia/métodos , Pele/patologia , Pele/efeitos da radiação , Adulto , Fatores Etários , Idoso , Feminino , Humanos , Terapia a Laser/métodos , Lasers , Masculino , Pessoa de Meia-Idade , Fótons , Envelhecimento da Pele/efeitos da radiação , Resultado do Tratamento
16.
J Biophotonics ; 7(1-2): 86-95, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23401427

RESUMO

Two optical fibre-based probes for spectroscopic measurements on human tissues were designed and developed. The two probes combine fluorescence and Raman spectroscopy in a multimodal approach. The fluorescence excitation was provided by two laser diodes emitting in the UV (378 nm) and in the visible (445 nm) range, while a third source in the NIR (785 nm) was used for Raman. The device was tested on freshly excised human skin biopsies clinically diagnosed as malignant melanoma, melanocytic nevus, or healthy skin. Discrimination of lesions based on their fluorescence and Raman spectra showed good correlation with the subsequent histological examination.


Assuntos
Melanoma/diagnóstico , Nevo Pigmentado/diagnóstico , Espectrometria de Fluorescência/métodos , Análise Espectral Raman/métodos , Adulto , Idoso , Algoritmos , Diagnóstico Diferencial , Feminino , Humanos , Masculino , Melanoma/patologia , Pessoa de Meia-Idade , Nevo Pigmentado/patologia , Fibras Ópticas , Pele/patologia , Espectrometria de Fluorescência/instrumentação , Análise Espectral Raman/instrumentação , Adulto Jovem
17.
Biomed Opt Express ; 4(7): 1204-13, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23847743

RESUMO

Two-photon spectral resolved imaging was used to image fresh human biopsies of colon tissue and to characterize healthy colon mucosa, adenomatous polyp and adenocarcinoma by means of a morpho-functional analysis. Morphological examination, performed using endogenous tissue fluorescence, discriminated adenomatous and adenocarcinoma tissues from normal mucosa in terms of cellular asymmetry and nucleus-to-cytoplasm ratio. Good agreement was found between multiphoton images and histological examination performed on the same samples. Further characterization, performed by means of spectral-resolved analysis of NADH and FAD fluorescence, demonstrated an altered metabolic activity in both adenomatous and adenocarcinoma tissues compared to healthy mucosa. This morpho-functional approach may represent a powerful method to be used in combination with endoscopy for in vivo optical diagnosis of colon cancer and may be extended to other tissues.

18.
Opt Express ; 21(4): 4826-40, 2013 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-23482017

RESUMO

Dermoscopy is the conventional technique used for the clinical inspection of human skin lesions. However, the identification of diagnostically relevant morphologies can become a complex task. We report on the development of a polarization multispectral dermoscope for the in vivo imaging of skin lesions. Linearly polarized illumination at three distinct spectral regions (470, 530 and 625 nm), is performed by high luminance LEDs. Processing of the acquired images, by means of spectral and polarization filtering, produces new contrast images, each one specific for melanin absorption, hemoglobin absorption, and single scattering. Analysis of such images could facilitate the identification of pathological morphologies.


Assuntos
Biomarcadores Tumorais/análise , Dermoscopia/instrumentação , Microscopia de Polarização/instrumentação , Imagem Molecular/instrumentação , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Análise Espectral/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos
19.
J Biomed Opt ; 17(6): 060901, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22734730

RESUMO

Second-harmonic-generation (SHG) microscopy has emerged as a powerful tool to image unstained living tissues and probe their molecular and supramolecular organization. In this article, we review the physical basis of SHG, highlighting how coherent summation of second-harmonic response leads to the sensitivity of polarized SHG to the three-dimensional distribution of emitters within the focal volume. Based on the physical description of the process, we examine experimental applications for probing the molecular organization within a tissue and its alterations in response to different biomedically relevant conditions. We also describe the approach for obtaining information on molecular conformation based on SHG polarization anisotropy measurements and its application to the study of myosin conformation in different physiological states of muscle. The capability of coupling the advantages of nonlinear microscopy (micrometer-scale resolution in deep tissue) with tools for probing molecular structure in vivo renders SHG microscopy an extremely powerful tool for the advancement of biomedical optics, with particular regard to novel technologies for molecular diagnostic in vivo.


Assuntos
Microscopia/métodos , Animais , Anisotropia , Colágeno/química , Córnea/fisiologia , Humanos , Microscopia de Polarização/métodos , Modelos Estatísticos , Conformação Molecular , Estrutura Molecular , Músculos/citologia , Miosinas/química , Conformação Proteica , Proteínas/química , Espalhamento de Radiação , Suínos
20.
Anal Bioanal Chem ; 400(9): 2687-97, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21455652

RESUMO

In recent years fluorescence microscopy has become a widely used tool for tissue imaging and spectroscopy. Optical techniques, based on both linear and non-linear excitation, have been broadly applied to imaging and characterization of biological tissues. Among fluorescence techniques used in tissue imaging applications, in recent years two and three-photon excited fluorescence have gained increased importance because of their high-resolution deep tissue imaging capability inside optically turbid samples. The main limitation of steady-state fluorescence imaging techniques consists in providing only morphological information; functional information is not detectable without technical improvements. A spectroscopic approach, based on lifetime measurement of tissue fluorescence, can provide functional information about tissue conditions, including its environment, red-ox state, and pH, and hence physiological characterization of the tissue under investigation. Measurement of the fluorescence lifetime is a very important issue for characterizing a biological tissue. Deviation of this property from a control value can be taken as an indicator of disorder and/or malignancy in diseased tissues. Even if much work on this topic has still to be done, including the interpretation of fluorescence lifetime data, we believe that this methodology will gain increasing importance in the field of biophotonics. In this paper, we review methodologies, potentials and results obtained by using fluorescence lifetime imaging microscopy for the investigation of biological tissues.


Assuntos
Microscopia de Fluorescência/métodos , Espectrometria de Fluorescência/métodos , Animais , Flavina-Adenina Dinucleotídeo/metabolismo , Humanos , NAD/metabolismo , Neoplasias/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA