Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37513947

RESUMO

Pomegranate fruit (PF) is a fruit rich in nutraceuticals. Nonedible parts of the fruit, especially peels, contain high amounts of bioactive components that have been largely used in traditional medicine, such as the Chinese, Unani, and Ayurvedic ones, for treating several diseases. Polyphenols such as anthocyanins, tannins, flavonoids, phenolic acids, and lignans are the major bioactive molecules present in PF. Therefore, PF is considered a source of natural multifunctional agents that exert simultaneously antioxidant, anti-inflammatory, antitumor, antidiabetic, cardiovascular, and neuroprotective activities. Recently, several studies have reported that the nutraceuticals contained in PF (seed, peel, and juice) have a potential beneficial role in Alzheimer's disease (AD). Research suggests that the neuroprotective effect of PF is mostly due to its potent antioxidant and anti-inflammatory activities which contribute to attenuate the neuroinflammation associated with AD. Despite the numerous works conducted on PF, to date the mechanism by which PF acts in combatting AD is not completely known. Here, we summarize all the recent findings (in vitro and in vivo studies) related to the positive effects that PF and its bioactive components can have in the neurodegeneration processes occurring during AD. Moreover, considering the high biotransformation characteristics of the nutraceuticals present in PF, we propose to consider the chemical structure of its active metabolites as a source of inspiration to design new molecules with the same beneficial effects but less prone to be affected by the metabolic degradation process.

2.
Int J Mol Sci ; 24(3)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36768470

RESUMO

Breast cancer is the first leading tumor in women in terms of incidence worldwide. Seventy percent of cases are estrogen receptor (ER) α-positive. In these malignancies, 17ß-estradiol (E2) via ERα increases the levels of neuroglobin (NGB), a compensatory protein that protects cancer cells from stress-induced apoptosis, including chemotherapeutic drug treatment. Our previous data indicate that resveratrol (RSV), a plant-derived polyphenol, prevents E2/ERα-induced NGB accumulation in this cellular context, making E2-dependent breast cancer cells more prone to apoptosis. Unfortunately, RSV is readily metabolized, thus preventing its effectiveness. Here, four different RSV analogs have been developed, and their effect on the ERα/NGB pathway has been compared with RSV conjugated with highly hydrophilic gold nanoparticles as prodrug to evaluate if RSV derivatives maintain the breast cancer cells' susceptibility to the chemotherapeutic drug paclitaxel as the original compound. Results demonstrate that RSV conjugation with gold nanoparticles increases RSV efficacy, with respect to RSV analogues, reducing NGB levels and enhancing the pro-apoptotic action of paclitaxel, even preventing the anti-apoptotic action exerted by E2 treatment on these cells. Overall, RSV conjugation with gold nanoparticles makes this complex a promising agent for medical application in breast cancer treatment.


Assuntos
Neoplasias da Mama , Nanopartículas Metálicas , Pró-Fármacos , Feminino , Humanos , Neuroglobina/farmacologia , Neoplasias da Mama/metabolismo , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Receptor alfa de Estrogênio/metabolismo , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Globinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Ouro/farmacologia , Estradiol/farmacologia , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Linhagem Celular Tumoral , Apoptose , Estrogênios/farmacologia
3.
Nutrients ; 15(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36771455

RESUMO

Eicosapentaenoic acid (EPA; 20:5) and docosahexaenoic acid (DHA; 22:6), two omega-3 poly-unsaturated fatty acids (PUFAs), are the main components in oil derived from fish and other marine organisms. EPA and DHA are commercially available as dietary supplements and are considered to be very safe and contribute to guaranteeing human health. Studies report that PUFAs have a role in contrasting neurodegenerative processes related to amyloidogenic proteins, such as ß-amyloid for AD, α-synuclein in PD, and transthyretin (TTR) in TTR amyloidosis. In this context, we investigated if EPA and DHA can interact directly with TTR, binding inside the thyroxin-binding pockets (T4BP) that contribute to the tetramer stabilization. The data obtained showed that EPA and DHA can contribute to stabilizing the TTR tetramer through interactions with T4BP.


Assuntos
Amiloidose , Ácidos Graxos Ômega-3 , Humanos , Animais , Suplementos Nutricionais , Ácido Eicosapentaenoico , Ácidos Docosa-Hexaenoicos
4.
Mol Metab ; 67: 101662, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36566984

RESUMO

OBJECTIVE: The liver-derived circulating PCSK9 enhances the degradation of the LDL receptor (LDLR) in endosomes/lysosomes. PCSK9 inhibition or silencing is presently used in clinics worldwide to reduce LDL-cholesterol, resulting in lower incidence of cardiovascular disease and possibly cancer/metastasis. The mechanism by which the PCSK9-LDLR complex is sorted to degradation compartments is not fully understood. We previously suggested that out of the three M1, M2 and M3 subdomains of the C-terminal Cys/His-rich-domain (CHRD) of PCSK9, only M2 is critical for the activity of extracellular of PCSK9 on cell surface LDLR. This likely implicates the binding of M2 to an unknown membrane-associated "protein X" that would escort the complex to endosomes/lysosomes for degradation. We reported that a nanobody P1.40 binds the M1 and M3 domains of the CHRD and inhibits the function of PCSK9. It was also reported that the cytosolic adenylyl cyclase-associated protein 1 (CAP1) could bind M1 and M3 subdomains and enhance the activity of PCSK9. In this study, we determined the 3-dimensional structure of the CHRD-P1.40 complex to understand the intricate interplay between P1.40, CAP1 and PCSK9 and how they regulate LDLR degradation. METHODS: X-ray diffraction of the CHRD-P1.40 complex was analyzed with a 2.2 Å resolution. The affinity and interaction of PCSK9 or CHRD with P1.40 or CAP1 was analyzed by atomic modeling, site-directed mutagenesis, bio-layer interferometry, expression in hepatic cell lines and immunocytochemistry to monitor LDLR degradation. The CHRD-P1.40 interaction was further analyzed by deep mutational scanning and binding assays to validate the role of predicted critical residues. Conformational changes and atomic models were obtained by small angle X-ray scattering (SAXS). RESULTS: We demonstrate that PCSK9 exists in a closed or open conformation and that P1.40 favors the latter by binding key residues in the M1 and M3 subdomains of the CHRD. Our data show that CAP1 is well secreted by hepatic cells and binds extracellular PCSK9 at distinct residues in the M1 and M3 modules and in the acidic prodomain. CAP1 stabilizes the closed conformation of PCSK9 and prevents P1.40 binding. However, CAP1 siRNA only partially inhibited PCSK9 activity on the LDLR. By modeling the previously reported interaction between M2 and an R-X-E motif in HLA-C, we identified Glu567 and Arg549 as critical M2 residues binding HLA-C. Amazingly, these two residues are also required for the PCSK9-induced LDLR degradation. CONCLUSIONS: The present study reveals that CAP1 enhances the function of PCSK9, likely by twisting the protein into a closed configuration that exposes the M2 subdomain needed for targeting the PCSK9-LDLR complex to degradation compartments. We hypothesize that "protein X", which is expected to guide the LDLR-PCSK9-CAP1 complex to these compartments after endocytosis into clathrin-coated vesicles, is HLA-C or a similar MHC-I family member. This conclusion is supported by the PCSK9 natural loss-of-function Q554E and gain-of-function H553R M2 variants, whose consequences are anticipated by our modeling.


Assuntos
Antígenos HLA-C , Pró-Proteína Convertase 9 , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Serina Endopeptidases/metabolismo , Pró-Proteína Convertases/genética , Pró-Proteína Convertases/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X , Receptores de LDL/metabolismo
5.
Pharmaceuticals (Basel) ; 15(11)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36355491

RESUMO

Intracellular pathogens, such as Chlamydia trachomatis, have been recently shown to induce degradation of p53 during infection, thus impairing the protective response of the host cells. Therefore, p53 reactivation by disruption of the p53-MDM2 complex could reduce infection and restore pro-apoptotic effect of p53. Here, we report the identification of a novel MDM2 inhibitor with potential antitumoural and antibacterial activity able to reactivate p53. A virtual screening was performed on an in-house chemical library, previously synthesised for other targets, and led to the identification of a hit compound with a benzo[a]dihydrocarbazole structure, RM37. This compound induced p53 up-regulation in U343MG glioblastoma cells by blocking MDM2-p53 interaction and reduced tumour cell growth. NMR studies confirmed its ability to dissociate the MDM2-p53 complex. Notably, RM37 reduced Chlamydia infection in HeLa cells in a concentration-dependent manner and ameliorated the inflammatory status associated with infection.

6.
Biomed Pharmacother ; 150: 113094, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35658242

RESUMO

All five muscarinic receptors have important physiological roles. The endothelial M2 and M3 subtypes regulate arterial tone through direct coupling to Gq or Gi/o proteins. Yet, we lack selective pharmacological drugs to assess the respective contribution of muscarinic receptors to a given function. We used mamba snake venoms to identify a selective M2R ligand to investigate its contribution to arterial contractions. Using a bio-guided screening binding assay, we isolated MT9 from the black mamba venom, a three-finger toxin active on the M2R subtype. After sequencing and chemical synthesis of MT9, we characterized its structure by X-ray diffraction and determined its pharmacological characteristics by binding assays, functional tests, and ex vivo experiments on rat and human arteries. Although MT9 belongs to the three-finger fold toxins family, it is phylogenetically apart from the previously discovered muscarinic toxins, suggesting that two groups of peptides evolved independently and in a convergent way to target muscarinic receptors. The affinity of MT9 for the M2R is 100 times stronger than that for the four other muscarinic receptors. It also antagonizes the M2R/Gi pathways in cell-based assays. MT9 acts as a non-competitive antagonist against acetylcholine or arecaine, with low nM potency, for the activation of isolated rat mesenteric arteries. These results were confirmed on human internal mammary arteries. In conclusion, MT9 is the first fully characterized M2R-specific natural toxin. It should provide a tool for further understanding of the effect of M2R in various arteries and may position itself as a new drug candidate in cardio-vascular diseases.


Assuntos
Dendroaspis , Toxinas Biológicas , Animais , Artérias/metabolismo , Colinérgicos , Dendroaspis/metabolismo , Venenos Elapídicos/química , Venenos Elapídicos/metabolismo , Venenos Elapídicos/farmacologia , Humanos , Peptídeos/farmacologia , Ratos , Receptores Muscarínicos/metabolismo
7.
Molecules ; 26(21)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34770789

RESUMO

Carbonic anhydrases (CAs) are a group of ubiquitously expressed metalloenzymes that catalyze the reversible hydration/dehydration of CO2/HCO3. Thus, they are involved in those physiological and pathological processes in which cellular pH buffering plays a relevant role. The inhibition of CAs has pharmacologic applications for several diseases. In addition to the well-known employment of CA inhibitors (CAIs) as diuretics and antiglaucoma drugs, it has recently been demonstrated that CAIs could be considered as valid therapeutic agents against obesity, cancer, kidney dysfunction, migraine, Alzheimer's disease and epilepsy. Epilepsy is a chronic brain disorder that dramatically affects people of all ages. It is characterized by spontaneous recurrent seizures that are related to a rapid change in ionic composition, including an increase in intracellular potassium concentration and pH shifts. It has been reported that CAs II, VII and XIV are implicated in epilepsy. In this context, selective CAIs towards the mentioned isoforms (CAs II, VII and XIV) have been proposed and actually exploited as anticonvulsants agents in the treatment of epilepsy. Here, we describe the research achievements published on CAIs, focusing on those clinically used as anticonvulsants. In particular, we examine the new CAIs currently under development that might represent novel therapeutic options for the treatment of epilepsy.


Assuntos
Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/uso terapêutico , Epilepsia/tratamento farmacológico , Animais , Sítios de Ligação , Inibidores da Anidrase Carbônica/química , Anidrases Carbônicas/química , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Catálise , Ensaios Clínicos como Assunto , Gerenciamento Clínico , Suscetibilidade a Doenças , Desenho de Fármacos , Epilepsia/etiologia , Epilepsia/metabolismo , Humanos , Isoenzimas , Modelos Moleculares , Ligação Proteica , Relação Estrutura-Atividade , Resultado do Tratamento
8.
ACS Med Chem Lett ; 12(11): 1787-1793, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-35111280

RESUMO

The metalloproteinase ADAM8 is upregulated in several cancers but has a dispensable function under physiological conditions. In tumor cells, ADAM8 is involved in invasion, migration, and angiogenesis. The use of bivalent inhibitors could impair migration and invasion through the double binding to a homodimeric form of ADAM8 located on the cell surface of tumor cells. Herein we report the rational design and synthesis of the first dimeric ADAM8 inhibitors selective over ADAM10 and matrix metalloproteinases. Bivalent derivatives have been obtained by dimerizing the structure of a previously described ADAM17 inhibitor, JG26. In particular, derivative 2 was shown to inhibit ADAM8 proteolytic activity in vitro and in cell-based assays at nanomolar concentration. Moreover, it was more effective than the parent monomeric compound in blocking invasiveness in the breast cancer MDA-MB-231 cell line, thus supporting our hypothesis about the importance of inhibiting the active homodimer of ADAM8.

9.
J Biomol Struct Dyn ; 39(11): 3996-4004, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32448086

RESUMO

ATP citrate lyase (ACLY) is an important enzyme that catalyzes the conversion of citrate to acetyl-CoA in normal cells, facilitating the de novo fatty acid synthesis. Lipids and fatty acids were found to be accumulated in different types of tumors, such as brain, breast, rectal and ovarian cancer, representing a great source of energy for cancer cell growth and metabolism. Since ACLY-mediated conversion of citrate to acetyl-CoA constitutes the basis for fatty acid synthesis, ACLY seems to be quite an unexplored and promising therapeutic target for anticancer drug design. A pharmacophore-based virtual screening (VS) protocol with the aid of hierarchical docking, consensus docking (CD), molecular dynamics (MD) simulations and ligand-protein binding free energy calculations led to the identification of compound VS1, which showed a moderate but promising inhibitory activity, demonstrating to be 2.5 times more potent than reference inhibitor 2-hydroxycitrate. These results validate the reliability of our VS workflow and pave the way for the design of novel and more potent ACLY inhibitors.Communicated by Ramaswamy H. Sarma.


Assuntos
ATP Citrato (pro-S)-Liase , Neoplasias , Trifosfato de Adenosina , Humanos , Complexos Multienzimáticos , Oxo-Ácido-Liases , Reprodutibilidade dos Testes
10.
J Enzyme Inhib Med Chem ; 36(1): 34-47, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33100043

RESUMO

Uveal melanoma (UM) represents an aggressive type of cancer and currently, there is no effective treatment for this metastatic disease. In the last years, histone deacetylase inhibitors (HDACIs) have been studied as a possible therapeutic treatment for UM, alone or in association with other chemotherapeutic agents. Here we synthesised a series of new HDACIs based on the SAHA scaffold bearing an (arylidene)aminoxy moiety. Their HDAC inhibitory activity was evaluated on isolated human HDAC1, 3, 6, and 8 by fluorometric assay and their binding mode in the catalytic site of HDACs was studied by molecular docking. The most promising hit was the quinoline derivative VS13, a nanomolar inhibitor of HDAC6, which exhibited a good antiproliferative effect on UM cell lines at micromolar concentration and a capability to modify the mRNA levels of HDAC target genes similar to that of SAHA.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Melanoma/tratamento farmacológico , Quinolinas/farmacologia , Neoplasias Uveais/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/química , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Melanoma/metabolismo , Melanoma/patologia , Modelos Moleculares , Estrutura Molecular , Quinolinas/síntese química , Quinolinas/química , Relação Estrutura-Atividade , Neoplasias Uveais/metabolismo , Neoplasias Uveais/patologia
11.
Bioorg Med Chem ; 28(18): 115673, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32828431

RESUMO

Transthyretin (TTR) is a ß-sheet-rich homotetrameric protein that transports thyroxine (T4) and retinol both in plasma and in cerebrospinal fluid. TTR also interacts with amyloid-ß, playing a protective role in Alzheimer's disease. Dissociation of the native transthyretin (TTR) tetramer is widely accepted as the critical step in TTR amyloids fibrillogenesis, and is responsible for extracellular deposition of amyloid fibrils. Small molecules, able to bind in T4 binding sites and stabilize the TTR tetramer, are interesting tools to treat and prevent systemic ATTR amyloidosis. We report here the synthesis, in vitro evaluation and three-dimensional crystallographic analyses of new monoaryl-derivatives in complex with TTR. Of the derivatives reported here, the best inhibitor of TTR fibrillogenesis, 1d, exhibits an activity similar to diflunisal.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Fármacos Neuroprotetores/síntese química , Pré-Albumina/química , Propionatos/química , Agregados Proteicos/efeitos dos fármacos , Sítios de Ligação , Cristalografia por Raios X , Humanos , Modelos Moleculares , Conformação Molecular , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Pré-Albumina/genética , Pré-Albumina/metabolismo , Propionatos/metabolismo , Propionatos/farmacologia , Ligação Proteica , Relação Estrutura-Atividade
12.
J Enzyme Inhib Med Chem ; 35(1): 1145-1162, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32419519

RESUMO

Natural compounds, such as plant and fruit extracts have shown neuroprotective effect against neurodegenerative diseases. It has been reported that several natural compounds binding to transthyretin (TTR) can be useful in amyloidosis prevention. TTR is a transporter protein that under physiological condition carries thyroxine (T4) and retinol in plasma and in cerebrospinal fluid (CSF); it also has a neuroprotective role against Alzheimer's disease (AD). However, TTR also is an amyloidogenic protein responsible for familial amyloid polyneuropathy (FAP) and familial amyloid cardiomyopathy (FAC). The TTR amyloidogenic potential is speeded up by several point mutations. One therapeutic strategy against TTR amyloidosis is the stabilisation of the native tetramer by natural compounds and small molecules. In this review, we examine the natural products that, starting from 2012 to present, have been studied as a stabiliser of TTR tetramer. In particular, we discussed the chemical and structural features which will be helpful for future drug design of new TTR stabilisers.


Assuntos
Neuropatias Amiloides Familiares/prevenção & controle , Amiloide/metabolismo , Desenho de Fármacos , Fármacos Neuroprotetores/uso terapêutico , Pré-Albumina/metabolismo , Humanos , Fármacos Neuroprotetores/química
13.
Molecules ; 25(10)2020 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-32456156

RESUMO

Alzheimer's disease (AD) represents a progressive amyloidogenic disorder whose advancement is widely recognized to be connected to amyloid-ß peptides and Tau aggregation. However, several other processes likely contribute to the development of AD and some of them might be related to protein-protein interactions. Amyloid aggregates usually contain not only single type of amyloid protein, but also other type of proteins and this phenomenon can be rationally explained by the process of protein cross-seeding and co-assembly. Amyloid cross-interaction is ubiquitous in amyloid fibril formation and so a better knowledge of the amyloid interactome could help to further understand the mechanisms of amyloid related diseases. In this review, we discuss about the cross-interactions of amyloid-ß peptides, and in particular Aß1-42, with other amyloids, which have been presented either as integrated part of Aß neurotoxicity process (such as Tau) or conversely with a preventive role in AD pathogenesis by directly binding to Aß (such as transthyretin, cystatin C and apolipoprotein A1). Particularly, we will focus on all the possible therapeutic strategies aiming to rescue the Aß toxicity by taking inspiration from these protein-protein interactions.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Fragmentos de Peptídeos/metabolismo , Agregação Patológica de Proteínas/genética , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Amiloide/metabolismo , Peptídeos beta-Amiloides/genética , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Cistatina C/genética , Cistatina C/metabolismo , Humanos , Fragmentos de Peptídeos/genética , Pré-Albumina/genética , Pré-Albumina/metabolismo , Mapas de Interação de Proteínas/genética , Proteínas tau/genética , Proteínas tau/metabolismo
14.
Cell Chem Biol ; 26(4): 482-492.e7, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30686758

RESUMO

Ubiquinone (UQ) is a polyprenylated lipid that is conserved from bacteria to humans and is crucial to cellular respiration. How the cell orchestrates the efficient synthesis of UQ, which involves the modification of extremely hydrophobic substrates by multiple sequential enzymes, remains an unresolved issue. Here, we demonstrate that seven Ubi proteins form the Ubi complex, a stable metabolon that catalyzes the last six reactions of the UQ biosynthetic pathway in Escherichia coli. The SCP2 domain of UbiJ forms an extended hydrophobic cavity that binds UQ intermediates inside the 1-MDa Ubi complex. We purify the Ubi complex from cytoplasmic extracts and demonstrate that UQ biosynthesis occurs in this fraction, challenging the current thinking of a membrane-associated biosynthetic process. Collectively, our results document a rare case of stable metabolon and highlight how the supramolecular organization of soluble enzymes allows the modification of hydrophobic substrates in a hydrophilic environment.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Metabolismo dos Lipídeos , Ubiquinona/metabolismo , Vias Biossintéticas , Modelos Moleculares , Terpenos/metabolismo
15.
ACS Med Chem Lett ; 8(3): 293-298, 2017 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-28337319

RESUMO

Protein homodimers play important roles in physiological and pathological processes, including cancer invasion and metastasis. Recently, MMP-9 natural homodimerization via the PEX domain has been correlated with high migration rates of aggressive cancer cells. Here we propose that bifunctional MMP-9 inhibitors designed to impair natural MMP-9 homodimerization promoted by PEX-PEX interactions might be an effective tool to fight cancer cell invasion. Elaborating a previously described dimeric hydroxamate inhibitor 1, new ligands were synthesized with different linker lengths and branch points. Evaluation of the modified bifunctional ligands by X-ray crystallography and biological assays showed that 7 and 8 could reduce invasion in three glioma cell lines expressing MMP-9 at different levels. To rationalize these results, we present a theoretical model of full-length MMP-9 in complex with 7. This pioneering study suggests that a new approach using MMP-9 selective bifunctional inhibitors might lead to an effective therapy to reduce cancer cell invasion.

16.
ChemMedChem ; 11(16): 1865-74, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27159149

RESUMO

Misfolding and aggregation of the transthyretin (TTR) protein leads to certain forms of amyloidosis. Some nutraceuticals, such as flavonoids and natural polyphenols, have recently been investigated as modulators of the self-assembly process of TTR, but they generally suffer from limited bioavailability. To discover innovative and more bioavailable natural compounds able to inhibit TTR amyloid formation, a docking study was performed using the crystallographic structure of TTR. This computational strategy was projected as an ad hoc inspection of the possible relationship between binding site location and modulation of the assembly process; interactions with the as-yet-unexplored epigallocatechin gallate (EGCG) sites and with the thyroxine (T4) pocket were simultaneously analyzed. All the compounds studied seem to prefer the traditional T4 binding site, but some interesting results emerged from the screening of an in-house database, used for validating the computational protocol, and of the Herbal Ingredients Targets (HIT) catalogue available on the ZINC database.


Assuntos
Produtos Biológicos/farmacologia , Flavonoides/farmacologia , Polifenóis/farmacologia , Pré-Albumina/antagonistas & inibidores , Sítios de Ligação/efeitos dos fármacos , Produtos Biológicos/química , Relação Dose-Resposta a Droga , Flavonoides/química , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Polifenóis/química , Pré-Albumina/metabolismo , Relação Estrutura-Atividade
17.
J Enzyme Inhib Med Chem ; 31(sup1): 40-51, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27067161

RESUMO

Transthyretin (TTR), a ß-sheet-rich tetrameric protein, in equilibrium with an unstable amyloidogenic monomeric form is responsible for extracellular deposition of amyloid fibrils, is associated with the onset of neurodegenerative diseases, such as senile systemic amyloidosis, familial amyloid polyneuropathy and familial amyloid cardiomyopathy. One of the therapeutic strategies is to use small molecules to stabilize the TTR tetramer and thus curb amyloid fibril formation. Here, we report the synthesis, the in vitro evaluation of several halogen substituted 9-fluorenyl- and di-benzophenon-based ligands and their three-dimensional crystallographic analysis in complex with TTR. The synthesized compounds bind TTR and stabilize the tetramer with different potency. Of these compounds, 2c is the best inhibitor. The dual binding mode prevalent in the absence of substitutions on the fluorenyl ring, is disfavored by (2,7-dichloro-fluoren-9-ylideneaminooxy)-acetic acid (1b), (2,7-dibromo-fluoren-9-ylideneaminooxy)-acetic acid (1c) and (E/Z)-((3,4-dichloro-phenyl)-methyleneaminooxy)-acetic acid (2c), all with halogen substitutions.


Assuntos
Amiloide/biossíntese , Fluorenos/química , Fluorenos/farmacologia , Pré-Albumina/química , Relação Dose-Resposta a Droga , Fluorenos/síntese química , Humanos , Ligantes , Estrutura Molecular , Relação Estrutura-Atividade
18.
J Struct Biol ; 194(1): 8-17, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26796656

RESUMO

Transthyretin (TTR), a 54kDa homotetrameric protein that transports thyroxine (T4), has been associated with clinical cases of TTR amyloidosis for its tendency to aggregate to form fibrils. Many ligands with a potential to inhibit fibril formation have been studied by X-ray crystallography in complex with TTR. Unfortunately, the ligand is often found in ambiguous electron density that is difficult to interpret. The ligand validation statistics suggest over-interpretation, even for the most active compounds like diflunisal. The primary technical reason is its position on a crystallographic 2-fold axis in the most common crystal form. Further investigations with the use of polyethylene glycol (PEG) to crystallize TTR complexes have resulted in a new trigonal polymorph with two tetramers in the asymmetric unit. The ligand used to obtain this new polymorph, 4-hydroxychalcone, is related to curcumin. Here we evaluate this crystal form to understand the contribution it may bring to the study of TTR ligands complexes, which are often asymmetric.


Assuntos
Curcumina/química , Pré-Albumina/química , Domínios Proteicos , Multimerização Proteica , Sítios de Ligação/genética , Chalconas/química , Chalconas/metabolismo , Cristalização , Cristalografia por Raios X , Curcumina/metabolismo , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Mutação , Polietilenoglicóis/química , Pré-Albumina/genética , Pré-Albumina/metabolismo , Ligação Proteica
19.
J Enzyme Inhib Med Chem ; 31(5): 824-33, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26235916

RESUMO

Transthyretin (TTR) is a 54 kDa homotetrameric protein that transports thyroxine (T4) and retinol (vitamin A), through its association with retinol binding protein (RBP). Under unknown conditions, it aggregates to form fibrils associated with TTR amyloidosis. Ligands able to inhibit fibril formation have been studied by X-ray crystallography. The use of polyethylene glycol (PEG) instead of ammonium sulphate or citrate has been evaluated as an alternative to obtain new TTR complexes with (R)-3-(9-fluoren-9-ylideneaminooxy)-2-methyl-N-(methylsulfonyl) propionamide (48R(1)) and 2-(9H-fluoren-9-ylideneaminooxy) acetic acid (ES8(2)). The previously described fluorenyl based inhibitors (S)-3-((9H-fluoren-9-ylideneamino)oxy)-2-methylpropanoic acid (6BD) and 3-((9H-fluoren-9-ylideneamino)oxy)propanoic acid (7BD) have been re-evaluated with the changed crystallization method. The new TTR complexes with compounds of the same family show that the 9-fluorenyl motif can occupy alternative hydrophobic binding sites. This augments the potential use of this scaffold to yield a large variety of differently substituted mono-aryl compounds able to inhibit TTR fibril formation.


Assuntos
Amiloide/antagonistas & inibidores , Amiloide/metabolismo , Cristalografia por Raios X/métodos , Fluorenos/química , Modelos Moleculares , Pré-Albumina/química , Pré-Albumina/metabolismo , Motivos de Aminoácidos , Fluorenos/farmacologia , Estrutura Molecular , Polietilenoglicóis/química
20.
N Biotechnol ; 32(1): 54-64, 2015 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-25224922

RESUMO

Crystallographic structure determination of protein-ligand complexes of transthyretin (TTR) has been hindered by the low affinity of many compounds that bind to the central cavity of the tetramer. Because crystallization trials are carried out at protein and ligand concentration that approach the millimolar range, low affinity is less of a problem than the poor solubility of many compounds that have been shown to inhibit amyloid fibril formation. To achieve complete occupancy in co-crystallization experiments, the minimal requirement is one ligand for each of the two sites within the TTR tetramer. Here we present a new strategy for the co-crystallization of TTR using high molecular weight polyethylene glycol instead of high ionic strength precipitants, with ligands solubilized in multicomponent mixtures of compounds. This strategy is applied to the crystallization of TTR complexes with curcumin and 16α-bromo-estradiol. Here we report the crystal structures with these compounds and with the ferulic acid that results from curcumin degradation.


Assuntos
Curcumina/química , Estradiol/análogos & derivados , Pré-Albumina/química , Ácidos Cumáricos/química , Crioprotetores/farmacologia , Cristalização , Cristalografia por Raios X , Estradiol/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Modelos Moleculares , Solubilidade , Soluções , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA