Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 132, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167256

RESUMO

Copy number variants (CNV) are shown to contribute to the etiology of several genetic disorders. Accurate detection of CNVs on whole exome sequencing (WES) data has been a long sought-after goal for use in clinics. This was not possible despite recent improvements in performance because algorithms mostly suffer from low precision and even lower recall on expert-curated gold standard call sets. Here, we present a deep learning-based somatic and germline CNV caller for WES data, named ECOLE. Based on a variant of the transformer architecture, the model learns to call CNVs per exon, using high-confidence calls made on matched WGS samples. We further train and fine-tune the model with a small set of expert calls via transfer learning. We show that ECOLE achieves high performance on human expert labelled data for the first time with 68.7% precision and 49.6% recall. This corresponds to precision and recall improvements of 18.7% and 30.8% over the next best-performing methods, respectively. We also show that the same fine-tuning strategy using tumor samples enables ECOLE to detect RT-qPCR-validated variations in bladder cancer samples without the need for a control sample. ECOLE is available at https://github.com/ciceklab/ECOLE .


Assuntos
Variações do Número de Cópias de DNA , Exoma , Humanos , Sequenciamento do Exoma , Exoma/genética , Algoritmos , Éxons , Sequenciamento de Nucleotídeos em Larga Escala/métodos
2.
Bioinformatics ; 39(11)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37952175

RESUMO

MOTIVATION: Online assessment of tumor characteristics during surgery is important and has the potential to establish an intra-operative surgeon feedback mechanism. With the availability of such feedback, surgeons could decide to be more liberal or conservative regarding the resection of the tumor. While there are methods to perform metabolomics-based tumor pathology prediction, their model complexity predictive performance is limited by the small dataset sizes. Furthermore, the information conveyed by the feedback provided on the tumor tissue could be improved both in terms of content and accuracy. RESULTS: In this study, we propose a metabolic pathway-informed deep learning model (PiDeeL) to perform survival analysis and pathology assessment based on metabolite concentrations. We show that incorporating pathway information into the model architecture substantially reduces parameter complexity and achieves better survival analysis and pathological classification performance. With these design decisions, we show that PiDeeL improves tumor pathology prediction performance of the state-of-the-art in terms of the Area Under the ROC Curve by 3.38% and the Area Under the Precision-Recall Curve by 4.06%. Similarly, with respect to the time-dependent concordance index (c-index), PiDeeL achieves better survival analysis performance (improvement of 4.3%) when compared to the state-of-the-art. Moreover, we show that importance analyses performed on input metabolite features as well as pathway-specific neurons of PiDeeL provide insights into tumor metabolism. We foresee that the use of this model in the surgery room will help surgeons adjust the surgery plan on the fly and will result in better prognosis estimates tailored to surgical procedures. AVAILABILITY AND IMPLEMENTATION: The code is released at https://github.com/ciceklab/PiDeeL. The data used in this study are released at https://zenodo.org/record/7228791.


Assuntos
Aprendizado Profundo , Glioma , Humanos , Redes e Vias Metabólicas , Análise de Sobrevida , Área Sob a Curva
3.
Bioinformatics ; 38(12): 3238-3244, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35512389

RESUMO

MOTIVATION: Identification and removal of micro-scale residual tumor tissue during brain tumor surgery are key for survival in glioma patients. For this goal, High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance (HRMAS NMR) spectroscopy-based assessment of tumor margins during surgery has been an effective method. However, the time required for metabolite quantification and the need for human experts such as a pathologist to be present during surgery are major bottlenecks of this technique. While machine learning techniques that analyze the NMR spectrum in an untargeted manner (i.e. using the full raw signal) have been shown to effectively automate this feedback mechanism, high dimensional and noisy structure of the NMR signal limits the attained performance. RESULTS: In this study, we show that identifying informative regions in the HRMAS NMR spectrum and using them for tumor margin assessment improves the prediction power. We use the spectra normalized with the ERETIC (electronic reference to access in vivo concentrations) method which uses an external reference signal to calibrate the HRMAS NMR spectrum. We train models to predict quantities of metabolites from annotated regions of this spectrum. Using these predictions for tumor margin assessment provides performance improvements up to 4.6% the Area Under the ROC Curve (AUC-ROC) and 2.8% the Area Under the Precision-Recall Curve (AUC-PR). We validate the importance of various tumor biomarkers and identify a novel region between 7.97 ppm and 8.09 ppm as a new candidate for a glioma biomarker. AVAILABILITY AND IMPLEMENTATION: The code is released at https://github.com/ciceklab/targeted_brain_tumor_margin_assessment. The data underlying this article are available in Zenodo, at https://doi.org/10.5281/zenodo.5781769. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Metabolômica/métodos , Espectroscopia de Ressonância Magnética/métodos , Glioma/diagnóstico por imagem , Glioma/cirurgia , Imageamento por Ressonância Magnética
4.
IEEE/ACM Trans Comput Biol Bioinform ; 19(4): 2334-2344, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34086576

RESUMO

Drug combination therapies have been a viable strategy for the treatment of complex diseases such as cancer due to increased efficacy and reduced side effects. However, experimentally validating all possible combinations for synergistic interaction even with high-throughout screens is intractable due to vast combinatorial search space. Computational techniques can reduce the number of combinations to be evaluated experimentally by prioritizing promising candidates. We present MatchMaker that predicts drug synergy scores using drug chemical structure information and gene expression profiles of cell lines in a deep learning framework. For the first time, our model utilizes the largest known drug combination dataset to date, DrugComb. We compare the performance of MatchMaker with the state-of-the-art models and observe up to  âˆ¼ 15% correlation and  âˆ¼ 33% mean squared error (MSE) improvements over the next best method. We investigate the cell types and drug pairs that are relatively harder to predict and present novel candidate pairs. MatchMaker is built and available at https://github.com/tastanlab/matchmaker.


Assuntos
Aprendizado Profundo , Neoplasias , Biologia Computacional/métodos , Combinação de Medicamentos , Sinergismo Farmacológico , Humanos , Neoplasias/genética
5.
Bioinformatics ; 40(5)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38718189

RESUMO

MOTIVATION: Combination drug therapies are effective treatments for cancer. However, the genetic heterogeneity of the patients and exponentially large space of drug pairings pose significant challenges for finding the right combination for a specific patient. Current in silico prediction methods can be instrumental in reducing the vast number of candidate drug combinations. However, existing powerful methods are trained with cancer cell line gene expression data, which limits their applicability in clinical settings. While synergy measurements on cell line models are available at large scale, patient-derived samples are too few to train a complex model. On the other hand, patient-specific single-drug response data are relatively more available. RESULTS: In this work, we propose a deep learning framework, Personalized Deep Synergy Predictor (PDSP), that enables us to use the patient-specific single drug response data for customizing patient drug synergy predictions. PDSP is first trained to learn synergy scores of drug pairs and their single drug responses for a given cell line using drug structures and large scale cell line gene expression data. Then, the model is fine-tuned for patients with their patient gene expression data and associated single drug response measured on the patient ex vivo samples. In this study, we evaluate PDSP on data from three leukemia patients and observe that it improves the prediction accuracy by 27% compared to models trained on cancer cell line data. AVAILABILITY AND IMPLEMENTATION: PDSP is available at https://github.com/hikuru/PDSP.

6.
Nat Commun ; 12(1): 1177, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608514

RESUMO

Mass spectrometry enables high-throughput screening of phosphoproteins across a broad range of biological contexts. When complemented by computational algorithms, phospho-proteomic data allows the inference of kinase activity, facilitating the identification of dysregulated kinases in various diseases including cancer, Alzheimer's disease and Parkinson's disease. To enhance the reliability of kinase activity inference, we present a network-based framework, RoKAI, that integrates various sources of functional information to capture coordinated changes in signaling. Through computational experiments, we show that phosphorylation of sites in the functional neighborhood of a kinase are significantly predictive of its activity. The incorporation of this knowledge in RoKAI consistently enhances the accuracy of kinase activity inference methods while making them more robust to missing annotations and quantifications. This enables the identification of understudied kinases and will likely lead to the development of novel kinase inhibitors for targeted therapy of many diseases. RoKAI is available as web-based tool at http://rokai.io .


Assuntos
Biologia Computacional/métodos , Redes e Vias Metabólicas , Fosfotransferases/metabolismo , Transdução de Sinais/fisiologia , Algoritmos , Doença de Alzheimer/metabolismo , Redes Reguladoras de Genes/fisiologia , Humanos , Espectrometria de Massas , Neoplasias/metabolismo , Doença de Parkinson/metabolismo , Fosfoproteínas , Fosforilação , Fosfotransferases/genética , Proteômica/métodos , Reprodutibilidade dos Testes , Software , Biologia de Sistemas/métodos
7.
PLoS Comput Biol ; 16(11): e1008184, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33175838

RESUMO

Complete resection of the tumor is important for survival in glioma patients. Even if the gross total resection was achieved, left-over micro-scale tissue in the excision cavity risks recurrence. High Resolution Magic Angle Spinning Nuclear Magnetic Resonance (HRMAS NMR) technique can distinguish healthy and malign tissue efficiently using peak intensities of biomarker metabolites. The method is fast, sensitive and can work with small and unprocessed samples, which makes it a good fit for real-time analysis during surgery. However, only a targeted analysis for the existence of known tumor biomarkers can be made and this requires a technician with chemistry background, and a pathologist with knowledge on tumor metabolism to be present during surgery. Here, we show that we can accurately perform this analysis in real-time and can analyze the full spectrum in an untargeted fashion using machine learning. We work on a new and large HRMAS NMR dataset of glioma and control samples (n = 565), which are also labeled with a quantitative pathology analysis. Our results show that a random forest based approach can distinguish samples with tumor cells and controls accurately and effectively with a median AUC of 85.6% and AUPR of 93.4%. We also show that we can further distinguish benign and malignant samples with a median AUC of 87.1% and AUPR of 96.1%. We analyze the feature (peak) importance for classification to interpret the results of the classifier. We validate that known malignancy biomarkers such as creatine and 2-hydroxyglutarate play an important role in distinguishing tumor and normal cells and suggest new biomarker regions. The code is released at http://github.com/ciceklab/HRMAS_NC.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Glioma/diagnóstico por imagem , Aprendizado de Máquina , Espectroscopia de Ressonância Magnética/métodos , Margens de Excisão , Algoritmos , Biópsia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Estudos de Coortes , Glioma/patologia , Glioma/cirurgia , Humanos , Período Intraoperatório
8.
Cancers (Basel) ; 12(9)2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32825455

RESUMO

Matrix metalloproteinase 11 (MMP11) is an extracellular proteolytic enzyme belonging to the matrix metalloproteinase (MMP11) family. These proteases are involved in extracellular matrix (ECM) remodeling and activation of latent factors. MMP11 is a negative regulator of adipose tissue development and controls energy metabolism in vivo. In cancer, MMP11 expression is associated with poorer survival, and preclinical studies in mice showed that MMP11 accelerates tumor growth. How the metabolic role of MMP11 contributes to cancer development is poorly understood. To address this issue, we developed a series of preclinical mouse mammary gland tumor models by genetic engineering. Tumor growth was studied in mice either deficient (Loss of Function-LOF) or overexpressing MMP11 (Gain of Function-GOF) crossed with a transgenic model of breast cancer induced by the polyoma middle T antigen (PyMT) driven by the murine mammary tumor virus promoter (MMTV) (MMTV-PyMT). Both GOF and LOF models support roles for MMP11, favoring early tumor growth by increasing proliferation and reducing apoptosis. Of interest, MMP11 promotes Insulin-like Growth Factor-1 (IGF1)/protein kinase B (AKT)/Forkhead box protein O1 (FoxO1) signaling and is associated with a metabolic switch in the tumor, activation of the endoplasmic reticulum stress response, and an alteration in the mitochondrial unfolded protein response with decreased proteasome activity. In addition, high resonance magic angle spinning (HRMAS) metabolomics analysis of tumors from both models established a metabolic signature that favors tumorigenesis when MMP11 is overexpressed. These data support the idea that MMP11 contributes to an adaptive metabolic response, named metabolic flexibility, promoting cancer growth.

9.
Artigo em Inglês | MEDLINE | ID: mdl-31180895

RESUMO

1H High-Resolution Magic Angle Spinning (HRMAS) Nuclear Magnetic Resonance (NMR) is a reliable technology used for detecting metabolites in solid tissues. Fast response time enables guiding surgeons in real time, for detecting tumor cells that are left over in the excision cavity. However, severe overlap of spectral resonances in 1D signal often render distinguishing metabolites impossible. In that case, Heteronuclear Single Quantum Coherence Spectroscopy (HSQC) NMR is applied which can distinguish metabolites by generating 2D spectra ( 1H- 13C). Unfortunately, this analysis requires much longer time and prohibits real time analysis. Thus, obtaining 2D spectrum fast has major implications in medicine. In this study, we show that using multiple multivariate regression and statistical total correlation spectroscopy, we can learn the relation between the 1H and 13C dimensions. Learning is possible with small sample sizes and without the need for performing the HSQC analysis, we can predict the 13C dimension by just performing 1H HRMAS NMR experiment. We show on a rat model of central nervous system tissues (80 samples, 5 tissues) that our methods achieve 0.971 and 0.957 mean R2 values, respectively. Our tests on 15 human brain tumor samples show that we can predict 104 groups of 39 metabolites with 97 percent accuracy. Finally, we show that we can predict the presence of a drug resistant tumor biomarker (creatine) despite obstructed signal in 1H dimension. In practice, this information can provide valuable feedback to the surgeon to further resect the cavity to avoid potential recurrence.


Assuntos
Cuidados Intraoperatórios/métodos , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Algoritmos , Animais , Biópsia , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/cirurgia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Isótopos de Carbono , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/cirurgia , Feminino , Ratos
10.
J Proteome Res ; 19(1): 292-299, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31679342

RESUMO

Meningiomas are in most cases benign brain tumors. The WHO 2016 classification defines three grades of meningiomas. This classification had a prognosis value because grade III meningiomas have a worse prognosis value compared to grades I and II meningiomas. However, some benign or atypical meningiomas can have a clinical aggressive behavior. There are currently no reliable markers which allow distinguishing between the meningiomas with a good prognosis and those which may recur. High-resolution magic angle spinning (HRMAS) spectrometry is a noninvasive method able to determine the metabolite profile of a tissue sample. We retrospectively analyzed 62 meningioma samples by using HRMAS spectrometry (43 metabolites). We described a metabolic profile defined by a high concentration for acetate, threonine, N-acetyl-lysine, hydroxybutyrate, myoinositol, ascorbate, scylloinositol, and total choline and a low concentration for aspartate, glucose, isoleucine, valine, adenosine, arginine, and alanine. This metabolomic signature was associated with poor prognosis histological markers [Ki-67 ≥ 40%, high histological grade and negative progesterone receptor (PR) expression]. We also described a similar metabolomic spectrum between grade III and grade I meningiomas. Moreover, all grade I meningiomas with a low Ki-67 expression and a positive PR expression did not have the same metabolomic profile. Metabolomic analysis could be used to determine an aggressive meningioma in order to discuss a personalized treatment. Further studies are needed to confirm these results and to correlate this metabolic profile with survival data.


Assuntos
Neoplasias Encefálicas/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Meningioma/metabolismo , Aminoácidos/análise , Aminoácidos/metabolismo , Biópsia , Neoplasias Encefálicas/cirurgia , Proliferação de Células , Humanos , Antígeno Ki-67/metabolismo , Meningioma/patologia , Meningioma/cirurgia , Metabolômica/métodos
11.
Metabolites ; 9(12)2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31835679

RESUMO

To assess the metabolomic fingerprint of small intestine neuroendocrine tumors (SI-NETs) and related hepatic metastases, and to investigate the influence of the hepatic environment on SI-NETs metabolome. Ninety-four tissue samples, including 46 SI-NETs, 18 hepatic NET metastases and 30 normal SI and liver samples, were analyzed using 1H-magic angle spinning (HRMAS) NMR nuclear magnetic resonance (NMR) spectroscopy. Twenty-seven metabolites were identified and quantified. Differences between primary NETs vs. normal SI and primary NETs vs. hepatic metastases, were assessed. Network analysis was performed according to several clinical and pathological features. Succinate, glutathion, taurine, myoinositol and glycerophosphocholine characterized NETs. Normal SI specimens showed higher levels of alanine, creatine, ethanolamine and aspartate. PLS-DA revealed a continuum-like distribution among normal SI, G1-SI-NETs and G2-SI-NETs. The G2-SI-NET distribution was closer and clearly separated from normal SI tissue. Lower concentration of glucose, serine and glycine, and increased levels of choline-containing compounds, taurine, lactate and alanine, were found in SI-NETs with more aggressive tumors. Higher abundance of acetate, succinate, choline, phosphocholine, taurine, lactate and aspartate discriminated liver metastases from normal hepatic parenchyma. Higher levels of alanine, ethanolamine, glycerophosphocholine and glucose was found in hepatic metastases than in primary SI-NETs. The present work gives for the first time a snapshot of the metabolomic characteristics of SI-NETs, suggesting the existence of complex metabolic reality, maybe characteristic of different tumor evolution.

12.
Clin Nucl Med ; 44(12): 936-942, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31524681

RESUMO

PURPOSE: As well as in many others cancers, FDG uptake is correlated with the degree of malignancy in gliomas, that is, commonly high FDG uptake in high-grade gliomas. However, in clinical practice, it is not uncommon to observe high-grade gliomas with low FDG uptake. Our aim was to explore the tumor metabolism in 2 populations of high-grade gliomas presenting high or low FDG uptake. METHODS: High-resolution magic-angle spinning nuclear magnetic resonance spectroscopy was realized on tissue samples from 7 high-grade glioma patients with high FDG uptake and 5 high-grade glioma patients with low FDG uptake. Tumor metabolomics was evaluated from 42 quantified metabolites and compared by network analysis. RESULTS: Whether originating from astrocytes or oligodendrocytes, the high-grade gliomas with low FDG avidity represent a subgroup of high-grade gliomas presenting common characteristics: low aspartate, glutamate, and creatine levels, which are probably related to the impaired electron transport chain in mitochondria; high serine/glycine metabolism and so one-carbon metabolism; low glycerophosphocholine-phosphocholine ratio in membrane metabolism, which is associated with tumor aggressiveness; and finally negative MGMT methylation status. CONCLUSIONS: It seems imperative to identify this subgroup of high-grade gliomas with low FDG avidity, which is especially aggressive. Their identification could be important for early detection for a possible personalized treatment, such as antifolate treatment.


Assuntos
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Fluordesoxiglucose F18/metabolismo , Glioma/metabolismo , Glioma/patologia , Transporte Biológico , Neoplasias Encefálicas/diagnóstico por imagem , Feminino , Glioma/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons
13.
Nat Commun ; 10(1): 3399, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31363082

RESUMO

Identifying driver genes from somatic mutations is a central problem in cancer biology. Existing methods, however, either lack explicit statistical models, or use models based on simplistic assumptions. Here, we present driverMAPS (Model-based Analysis of Positive Selection), a model-based approach to driver gene identification. This method explicitly models positive selection at the single-base level, as well as highly heterogeneous background mutational processes. In particular, the selection model captures elevated mutation rates in functionally important sites using multiple external annotations, and spatial clustering of mutations. Simulations under realistic evolutionary models demonstrate the increased power of driverMAPS over current approaches. Applying driverMAPS to TCGA data of 20 tumor types, we identified 159 new potential driver genes, including the mRNA methyltransferase METTL3-METTL14. We experimentally validated METTL3 as a tumor suppressor gene in bladder cancer, providing support to the important role mRNA modification plays in tumorigenesis.


Assuntos
Neoplasias/genética , Oncogenes , Carcinogênese , Humanos , Metiltransferases/genética , Modelos Genéticos , Mutação , Taxa de Mutação
14.
Metabolomics ; 15(5): 69, 2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-31037432

RESUMO

INTRODUCTION: The identification of frequent acquired mutations shows that patients with oligodendrogliomas have divergent biology with differing prognoses regardless of histological classification. A better understanding of molecular features as well as their metabolic pathways is essential. OBJECTIVES: The aim of this study was to examine the relationship between the tumor metabolome, six genomic aberrations (isocitrate dehydrogenase1 [IDH1] mutation, 1p/19q codeletion, tumor protein p53 [TP53] mutation, O6-methylguanin-DNA methyltransferase [MGMT] promoter methylation, epidermal growth factor receptor [EGFR] amplification, phosphate and tensin homolog [PTEN] methylation), and the patients' survival time. METHODS: We applied 1H high-resolution magic-angle spinning (HRMAS) nuclear magnetic resonance (NMR) spectroscopy to 72 resected oligodendrogliomas. RESULTS: The presence of IDH1, TP53, 1p19q codeletion, MGMT promoter methylation reduced the relative risk of death, whereas PTEN methylation and EGFR amplification were associated with poor prognosis. Increased concentration of 2-hydroxyglutarate (2HG), N-acetyl-aspartate (NAA), myo-inositol and the glycerophosphocholine/phosphocholine (GPC/PC) ratio were good prognostic factors. Increasing the concentration of serine, glycine, glutamate and alanine led to an increased relative risk of death. CONCLUSION: HRMAS NMR spectroscopy provides accurate information on the metabolomics of oligodendrogliomas, making it possible to find new biomarkers indicative of survival. It enables rapid characterization of intact tissue and could be used as an intraoperative method.


Assuntos
Metabolômica , Oligodendroglioma/genética , Oligodendroglioma/metabolismo , Adulto , Humanos , Espectroscopia de Ressonância Magnética , Índice de Gravidade de Doença , Análise de Sobrevida , Fatores de Tempo
15.
HPB (Oxford) ; 21(10): 1354-1361, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30914156

RESUMO

BACKGROUND: Posthepatectomy liver failure (PHLF) is the main limitation to extending liver resection but its pathophysiology is not yet fully understood. The aim of the study was to describe the metabolic adaptations that occur with PHLF. METHODS: A retrospective study of 82 patients using nuclear magnetic resonance metabolomics to identify and quantify intra-hepatic metabolites was performed. The metabolite levels were compared using metabolic network analysis ADEMA between fatal PHLF (FLF) and non fatal PHLF and according to PHLF/ACLF grading. RESULTS: Metabolomic profiles were significantly different between patients presenting FLF and non FLF or grade 3 ACLF versus < grade 3 ACLF. In the patients undergoing hepatectomy, valine, alanine and glycerophosphocholine were identified as powerful biomarkers to predict FLF (AUROC 0.806, 0.802 and 0.856 respectively). Network analysis showed an activation of aerobic glycolysis with glutaminolysis as observed in highly proliferating systems. Inversely, ACLF3 showed deprivation of glucose and lactate compared to lower ACLF grade. CONCLUSION: Clinical andbiological severity of ACLF and PHLF correlate with specific metabolic adaptations. Metabolomics can predict fatal liver failure after hepatectomy and underline significant differences in the metabolic patterns of ACLF and PHLF.


Assuntos
Insuficiência Hepática Crônica Agudizada/metabolismo , Biomarcadores/metabolismo , Hepatectomia/efeitos adversos , Fígado/metabolismo , Metabolômica/métodos , Complicações Pós-Operatórias , Insuficiência Hepática Crônica Agudizada/diagnóstico , Insuficiência Hepática Crônica Agudizada/etiologia , Idoso , Alanina/metabolismo , Carcinoma Hepatocelular/cirurgia , Feminino , Seguimentos , Humanos , Fígado/patologia , Neoplasias Hepáticas/cirurgia , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Diester Fosfórico Hidrolases/metabolismo , Curva ROC , Estudos Retrospectivos , Fatores de Risco , Valina/metabolismo
16.
Oncotarget ; 8(42): 71597-71617, 2017 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-29069732

RESUMO

Pediatric high grade glioma (pHGGs), including sus-tentorial and diffuse intrinsic pontine gliomas, are known to have a very dismal prognosis. For instance, even an increased knowledge on molecular biology driving this brain tumor entity, there is no treatment able to cure those patients. Therefore, we were focusing on a translational pathway able to increase the cell resistance to treatment and to reprogram metabolically tumor cells, which are, then, adapting easily to a hypoxic microenvironment. To establish, the crucial role of the hypoxic pathways in pHGGs, we, first, assessed their protein and transcriptomic deregulations in a pediatric cohort of pHGGs and in pHGG's cell lines, cultured in both normoxic and hypoxic conditions. Secondly, based on the concept of a bi-therapy targeting in pHGGs mTORC1 (rapamycin) and HIF-1α (irinotecan), we hypothesized that the balanced expressions between RAS/ERK, PI3K/AKT and HIF-1α/HIF-2α/MYC proteins or genes may provide a modulation of the cell response to this double targeting. Finally, we could evidence three protein, genomic and metabolomic profiles of response to rapamycin combined with irinotecan. The pattern of highly sensitive cells to mTOR/HIF-1α targeting was linked to a MYC/ERK/HIF-1α over-expression and the cell resistance to a major hyper-expression of HIF-2α.

17.
Surgery ; 160(2): 384-94, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27106795

RESUMO

BACKGROUND: Primary hyperparathyroidism (PHPT) may be related to a single gland disease or multiglandular disease, which requires specific treatments. At present, an operation is the only curative treatment for PHPT. Currently, there are no biomarkers available to identify these 2 entities (single vs. multiple gland disease). The aims of the present study were to compare (1) the tissue metabolomics profiles between PHPT and renal hyperparathyroidism (secondary and tertiary) and (2) single gland disease with multiglandular disease in PHPT using metabolomics analysis. METHODS: The method used was (1)H high-resolution magic angle spinning nuclear magnetic resonance spectroscopy. Forty-three samples from 32 patients suffering from hyperparathyroidism were included in this study. RESULTS: Significant differences in the metabolomics profile were assessed according to PHPT and renal hyperparathyroidism. A bicomponent orthogonal partial least square-discriminant analysis showed a clear distinction between PHPT and renal hyperparathyroidism (R(2)Y = 0.85, Q(2) = 0.63). Interestingly, the model also distinguished single gland disease from multiglandular disease (R(2)Y = 0.96, Q(2) = 0.55). A network analysis was also performed using the Algorithm to Determine Expected Metabolite Level Alterations Using Mutual Information (ADEMA). Single gland disease was accurately predicted by ADEMA and was associated with higher levels of phosphorylcholine, choline, glycerophosphocholine, fumarate, succinate, lactate, glucose, glutamine, and ascorbate compared with multiglandular disease. CONCLUSION: This study shows for the first time that (1)H high-resolution magic angle spinning nuclear magnetic resonance spectroscopy is a reliable and fast technique to distinguish single gland disease from multiglandular disease in patients with PHPT. The potential use of this method as an intraoperative tool requires specific further studies.


Assuntos
Hiperparatireoidismo Primário/metabolismo , Hiperparatireoidismo Secundário/metabolismo , Espectroscopia de Ressonância Magnética , Metabolômica , Adulto , Idoso , Feminino , Humanos , Hiperparatireoidismo Primário/diagnóstico , Hiperparatireoidismo Secundário/diagnóstico , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Estudos Retrospectivos
18.
Genome Biol ; 16: 205, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26400819

RESUMO

Methods for the analysis of chromatin immunoprecipitation sequencing (ChIP-seq) data start by aligning the short reads to a reference genome. While often successful, they are not appropriate for cases where a reference genome is not available. Here we develop methods for de novo analysis of ChIP-seq data. Our methods combine de novo assembly with statistical tests enabling motif discovery without the use of a reference genome. We validate the performance of our method using human and mouse data. Analysis of fly data indicates that our method outperforms alignment based methods that utilize closely related species.


Assuntos
Imunoprecipitação da Cromatina/métodos , Análise de Sequência de DNA/métodos , Animais , Linhagem Celular Tumoral , Drosophila/genética , Células-Tronco Embrionárias/metabolismo , Humanos , Camundongos , Motivos de Nucleotídeos , Fatores de Transcrição/metabolismo
19.
Neoplasia ; 17(1): 55-65, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25622899

RESUMO

Succinate dehydrogenase gene (SDHx) mutations increase susceptibility to develop pheochromocytomas/paragangliomas (PHEOs/PGLs). In the present study, we evaluate the performance and clinical applications of (1)H high-resolution magic angle spinning (HRMAS) nuclear magnetic resonance (NMR) spectroscopy-based global metabolomic profiling in a large series of PHEOs/PGLs of different genetic backgrounds. Eighty-seven PHEOs/PGLs (48 sporadic/23 SDHx/7 von Hippel-Lindau/5 REarranged during Transfection/3 neurofibromatosis type 1/1 hypoxia-inducible factor 2α), one SDHD variant of unknown significance, and two Carney triad (CTr)-related tumors were analyzed by HRMAS-NMR spectroscopy. Compared to sporadic, SDHx-related PHEOs/PGLs exhibit a specific metabolic signature characterized by increased levels of succinate (P < .0001), methionine (P = .002), glutamine (P = .002), and myoinositol (P < .0007) and decreased levels of glutamate (P < .0007), regardless of their location and catecholamine levels. Uniquely, ATP/ascorbate/glutathione was found to be associated with the secretory phenotype of PHEOs/PGLs, regardless of their genotype (P < .0007). The use of succinate as a single screening test retained excellent accuracy in distinguishing SDHx versus non-SDHx-related tumors (sensitivity/specificity: 100/100%). Moreover, the quantification of succinate could be considered a diagnostic alternative for assessing SDHx-related mutations of unknown pathogenicity. We were also able, for the first time, to uncover an SDH-like pattern in the two CTr-related PGLs. The present study demonstrates that HRMAS-NMR provides important information for SDHx-related PHEO/PGL characterization. Besides the high succinate-low glutamate hallmark, SDHx tumors also exhibit high values of methionine, a finding consistent with the hypermethylation pattern of these tumors. We also found important levels of glutamine, suggesting that glutamine metabolism might be involved in the pathogenesis of SDHx-related PHEOs/PGLs.


Assuntos
Metaboloma , Metabolômica , Paraganglioma/genética , Paraganglioma/metabolismo , Feocromocitoma/genética , Feocromocitoma/metabolismo , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Masculino , Redes e Vias Metabólicas , Metabolômica/métodos , Pessoa de Meia-Idade , Modelos Moleculares , Mutação , Ressonância Magnética Nuclear Biomolecular , Paraganglioma/diagnóstico , Feocromocitoma/diagnóstico , Tomografia por Emissão de Pósitrons , Estrutura Secundária de Proteína , Curva ROC , Sensibilidade e Especificidade , Succinato Desidrogenase/química , Succinato Desidrogenase/deficiência , Ácido Succínico/química , Ácido Succínico/metabolismo , Tomografia Computadorizada por Raios X
20.
PLoS Comput Biol ; 9(1): e1002859, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23341761

RESUMO

Metabolomics is a relatively new "omics" platform, which analyzes a discrete set of metabolites detected in bio-fluids or tissue samples of organisms. It has been used in a diverse array of studies to detect biomarkers and to determine activity rates for pathways based on changes due to disease or drugs. Recent improvements in analytical methodology and large sample throughput allow for creation of large datasets of metabolites that reflect changes in metabolic dynamics due to disease or a perturbation in the metabolic network. However, current methods of comprehensive analyses of large metabolic datasets (metabolomics) are limited, unlike other "omics" approaches where complex techniques for analyzing coexpression/coregulation of multiple variables are applied. This paper discusses the shortcomings of current metabolomics data analysis techniques, and proposes a new multivariate technique (ADEMA) based on mutual information to identify expected metabolite level changes with respect to a specific condition. We show that ADEMA better predicts De Novo Lipogenesis pathway metabolite level changes in samples with Cystic Fibrosis (CF) than prediction based on the significance of individual metabolite level changes. We also applied ADEMA's classification scheme on three different cohorts of CF and wildtype mice. ADEMA was able to predict whether an unknown mouse has a CF or a wildtype genotype with 1.0, 0.84, and 0.9 accuracy for each respective dataset. ADEMA results had up to 31% higher accuracy as compared to other classification algorithms. In conclusion, ADEMA advances the state-of-the-art in metabolomics analysis, by providing accurate and interpretable classification results.


Assuntos
Algoritmos , Metabolômica , Animais , Lipogênese , Camundongos , Modelos Teóricos , Análise Multivariada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA