Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Nat Prod ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958274

RESUMO

Mycoplasma genitalium is a sexually transmitted bacterium associated with urogenital disease syndromes in the US and worldwide. The global rise in drug resistance in M. genitalium necessitates the development of novel drugs to treat this pathogen. To address this need, we have screened extracts from a library of fungal isolates assembled through the University of Oklahoma Citizen Science Soil Collection Program. Analysis of one of the bioactive extracts using bioassay-guided fractionation led to the purification of the compound PF1140 (1) along with a new and several other known pyridones. The N-hydroxy pyridones are generally regarded as siderophores with high binding affinity for iron(III) under physiological conditions. Results from UV-vis absorption spectroscopy-based titration experiments revealed that 1 complexes with Fe3+. As M. genitalium does not utilize iron, we propose that the PF1140-iron complex induces cytotoxicity by facilitating the cellular uptake of iron, which reacts with endogenous hydrogen peroxide to produce toxic hydroxyl radicals.

2.
J Nat Prod ; 85(6): 1603-1616, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35696348

RESUMO

Seven new peptaibols named tolypocladamides A-G have been isolated from an extract of the fungus Tolypocladium inflatum, which inhibits the interaction between Raf and oncogenic Ras in a cell-based high-throughput screening assay. Each peptaibol contains 11 amino acid residues, an octanoyl or decanoyl fatty acid chain at the N-terminus, and a leucinol moiety at the C-terminus. The peptaibol sequences were elucidated on the basis of 2D NMR and mass spectral fragmentation analyses. Amino acid configurations were determined by advanced Marfey's analyses. Tolypocladamides A-G caused significant inhibition of Ras/Raf interactions with IC50 values ranging from 0.5 to 5.0 µM in a nanobioluminescence resonance energy transfer (NanoBRET) assay; however, no interactions were observed in a surface plasmon resonance assay for binding of the compounds to wild type or G12D mutant Ras constructs or to the Ras binding domain of Raf. NCI 60 cell line testing was also conducted, and little panel selectivity was observed.


Assuntos
Antineoplásicos , Hypocreales , Aminoácidos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Hypocreales/química , Peptaibols/farmacologia
3.
Nutrients ; 14(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35565653

RESUMO

Evidence of dried plum's benefits on bone continues to emerge. This study investigated the contribution of the fruit's polyphenol (PP) and carbohydrate (CHO) components on a bone model of postmenopausal osteoporosis to explore their prebiotic activity. Osteopenic ovariectomized mice were fed diets supplemented with dried plum, a crude extract of dried plum's polyphenolic compounds, or the PP or CHO fraction of the crude extract. The effects of treatments on the bone phenotype were assessed at 5 and 10 weeks as well as the prebiotic activity of the different components of dried plum. Both the CHO and PP fractions of the extract contributed to the effects on bone with the CHO suppressing bone formation and resorption, and the PP temporally down-regulating formation. The PP and CHO components also altered the gut microbiota and cecal short chain fatty acids. These findings demonstrate that the CHO as well as the PP components of dried plum have potential prebiotic activity, but they have differential roles in mediating the alterations in bone formation and resorption that protect bone in estrogen deficiency.


Assuntos
Polifenóis , Prunus domestica , Animais , Densidade Óssea , Misturas Complexas/farmacologia , Estrogênios/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Polifenóis/farmacologia , Prebióticos
4.
Cancers (Basel) ; 13(24)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34944795

RESUMO

A screening program designed to identify natural products with selective cytotoxic effects against cell lines representing different types of pediatric solid tumors led to the identification of altertoxin II as a highly potent and selective cytotoxin against Ewing sarcoma cell lines. Altertoxin II, but not the related compounds altertoxin I and alteichin, was highly effective against every Ewing sarcoma cell line tested, with an average 25-fold selectivity for these cells as compared to cells representing other pediatric and adult cancers. Mechanism of action studies revealed that altertoxin II causes DNA double-strand breaks, a rapid DNA damage response, and cell cycle accumulation in the S phase. Our studies also demonstrate that the potent effects of altertoxin II are partially dependent on the progression through the cell cycle, because the G1 arrest initiated by a CDK4/6 inhibitor decreased antiproliferative potency more than 10 times. Importantly, the cell-type-selective DNA-damaging effects of altertoxin II in Ewing sarcoma cells occur independently of its ability to bind directly to DNA. Ultimately, we found that altertoxin II has a dose-dependent in vivo antitumor efficacy against a Ewing sarcoma xenograft, suggesting that it has potential as a therapeutic drug lead and will be useful to identify novel targets for Ewing-sarcoma-specific therapies.

5.
Sci Rep ; 11(1): 13597, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193920

RESUMO

Merkel cell carcinoma (MCC) is a rare, but aggressive skin cancer the incidence of which has increased significantly in recent years. The majority of MCCs have incorporated Merkel cell polyomavirus (VP-MCC) while the remainder are virus-negative (VN-MCC). Although a variety of therapeutic options have shown promise in treating MCC, there remains a need for additional therapeutics as well as probes for better understanding MCC. A high-throughput screening campaign was used to assess the ability of > 25,000 synthetic and natural product compounds as well as > 20,000 natural product extracts to affect growth and survival of VN-MCC and VP-MCC cell lines. Sixteen active compounds were identified that have mechanisms of action reported in the literature along with a number of compounds with unknown mechanisms. Screening results with pure compounds suggest a range of potential targets for MCC including DNA damage, inhibition of DNA or protein synthesis, reactive oxygen species, and proteasome inhibition as well as NFκB inhibition while also suggesting the importance of zinc and/or copper binding. Many of the active compounds, particularly some of the natural products, have multiple reported targets suggesting that this strategy might be a particularly fruitful approach. Processing of several active natural product extracts resulted in the identification of additional MCC-active compounds. Based on these results, further investigations focused on natural products sources, particularly of fungal origin, are expected to yield further potentially useful modulators of MCC.


Assuntos
Antineoplásicos , Produtos Biológicos , Carcinoma de Célula de Merkel , Neoplasias Cutâneas , Antineoplásicos/química , Antineoplásicos/farmacologia , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Carcinoma de Célula de Merkel/tratamento farmacológico , Carcinoma de Célula de Merkel/metabolismo , Carcinoma de Célula de Merkel/patologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
6.
Molecules ; 26(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208349

RESUMO

A new 11 amino acid linear peptide named roseabol A (1) and the known compound 13-oxo-trans-9,10-epoxy-11(E)-octadecenoic acid (2) were isolated from the fungus Clonostachys rosea. Combined NMR and MS analysis revealed that roseabol A (1) contained amino acid residues characteristic of the peptaibol family of peptides such as isovaline, α-aminoisobutyric acid, hydroxyproline, leucinol, and an N-terminal isovaleric acid moiety. The amino acid sequence was established by a combination of NMR studies and tandem MS fragmentation analyses, and the absolute configurations of the constituent amino acids of 1 were determined by the advanced Marfey's method. Compound 2 showed inhibitory activity against Merkel cell carcinoma, a rare and difficult-to-treat type of skin cancer, with an IC50 value of 16.5 µM.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Célula de Merkel/tratamento farmacológico , Hypocreales/química , Peptaibols/química , Peptaibols/farmacologia , Neoplasias Cutâneas/tratamento farmacológico , Sequência de Aminoácidos , Antineoplásicos/química , Carcinoma de Célula de Merkel/química , Carcinoma de Célula de Merkel/metabolismo , Linhagem Celular Tumoral , Humanos , Espectroscopia de Ressonância Magnética/métodos , Estrutura Molecular , Neoplasias Cutâneas/química , Neoplasias Cutâneas/metabolismo
7.
Cancers (Basel) ; 13(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200174

RESUMO

The heterogeneity of triple negative breast cancer (TNBC) has led to efforts to further subtype this disease with the hope of identifying new molecular liabilities and drug targets. Furthermore, the finding that TNBC is the most inherently immunogenic type of breast cancer provides the potential for effective treatment with immune checkpoint inhibitors and immune adjuvants. Thus, we devised a dual screen to identify compounds from natural product extracts with TNBC subtype selectivity that also promote the expression of cytokines associated with antitumor immunity. These efforts led to the identification of yuanhuacine (1) as a potent and highly selective inhibitor of the basal-like 2 (BL2) subtype of TNBC that also promoted an antitumor associated cytokine signature in immune cells. The mechanism of action of yuanhuacine for both phenotypes depends on activation of protein kinase C (PKC), defining a novel target for the treatment of this clinical TNBC subtype. Yuanhuacine showed potent antitumor efficacy in animals bearing BL2 tumors further demonstrating that PKC could function as a potential pharmacological target for the treatment of the BL2 subtype of TNBC.

8.
J Nat Prod ; 84(2): 503-517, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33565879

RESUMO

Malaria remains a worldwide threat, afflicting over 200 million people each year. The emergence of drug resistance against existing therapeutics threatens to destabilize global efforts aimed at controlling Plasmodium spp. parasites, which is expected to leave vast portions of humanity unprotected against the disease. To address this need, systematic testing of a fungal natural product extract library assembled through the University of Oklahoma Citizen Science Soil Collection Program has generated an initial set of bioactive extracts that exhibit potent antiplasmodial activity (EC50 < 0.30 µg/mL) and low levels of toxicity against human cells (less than 50% reduction in HepG2 growth at 25 µg/mL). Analysis of the two top-performing extracts from Trichoderma sp. and Hypocrea sp. isolates revealed both contained chemically diverse assemblages of putative peptaibol-like compounds that were responsible for their antiplasmodial actions. Purification and structure determination efforts yielded 30 new peptaibols and lipopeptaibols (1-14 and 28-43), along with 22 known metabolites (15-27 and 44-52). While several compounds displayed promising activity profiles, one of the new metabolites, harzianin NPDG I (14), stood out from the others due to its noteworthy potency (EC50 = 0.10 µM against multi-drug-resistant P. falciparum line Dd2) and absence of gross toxicity toward HepG2 at the highest concentrations tested (HepG2 EC50 > 25 µM, selectivity index > 250). The unique chemodiversity afforded by these fungal isolates serves to unlock new opportunities for translating peptaibols into a bioactive scaffold worthy of further development.


Assuntos
Antimaláricos/farmacologia , Hypocrea/química , Peptaibols/biossíntese , Trichoderma/química , Produtos Biológicos/farmacologia , Resistência a Medicamentos , Células Hep G2 , Humanos , Estrutura Molecular , Pennsylvania , Peptaibols/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Microbiologia do Solo , Texas
9.
J Nat Prod ; 83(10): 3080-3092, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-33021790

RESUMO

There are no targeted therapies available for triple-negative breast cancers (TNBCs) in part because they represent a heterogeneous group of tumors with diverse oncogenic drivers. Our goal is to identify targeted therapies for subtypes of these cancers using a mechanism-blind screen of natural product extract libraries. An extract from Desmanthodium guatemalense was 4-fold more potent for cytotoxicity against MDA-MB-231 cells, which represent the mesenchymal stem-like (MSL) subtype, as compared to cells of other TNBC subtypes. Bioassay-guided fractionation led to the isolation of six polyacetylenes, and subsequent investigations of plant sources known to produce polyacetylenes yielded six additional structurally related compounds. A subset of these compounds retained selective cytotoxic effects in MSL subtype cells. Studies suggest that these selective effects do not appear to be due to PPARγ agonist activities that have previously been reported for polyacetylenes. A CRISPR-Cas9-mediated gene knockout screen was employed to identify the mechanism of selective cytotoxic activity of the most potent and selective compound, dehydrofalcarinol (1a). This genomic screen identified HSD17B11, the gene encoding the enzyme 17ß-hydroxysteroid dehydrogenase type 11, as a mediator of the selective cytotoxic effects of 1a in MDA-MB-231 cells that express high levels of this protein. The Project Achilles cancer dependency database further identified a subset of Ewing sarcoma cell lines as highly dependent on HSD17B11 expression, and it was found these were also highly sensitive to 1a. This report demonstrates the value of CRISPR-Cas9 genome-wide screens to identify the mechanisms underlying the selective activities of natural products.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Sistemas CRISPR-Cas , Técnicas de Inativação de Genes/métodos , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , 17-Hidroxiesteroide Desidrogenases/efeitos dos fármacos , 17-Hidroxiesteroide Desidrogenases/genética , Aldeído Oxirredutases/efeitos dos fármacos , Aldeído Oxirredutases/genética , Linhagem Celular Tumoral , Feminino , Humanos , Estrutura Molecular , PPAR gama/agonistas , RNA Interferente Pequeno/farmacologia
10.
J Nat Prod ; 83(7): 2269-2280, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32649211

RESUMO

Triple-negative breast cancers (TNBC) are aggressive and heterogeneous cancers that lack targeted therapies. We implemented a screening program to identify new leads for subgroups of TNBC using diverse cell lines with different molecular drivers. Through this program, we identified an extract from Calotropis gigantea that caused selective cytotoxicity in BT-549 cells as compared to four other TNBC cell lines. Bioassay-guided fractionation of the BT-549 selective extract yielded nine cardenolides responsible for the selective activity. These included eight known cardenolides and a new cardenolide glycoside. Structure-activity relationships among the cardenolides demonstrated a correlation between their relative potencies toward BT-549 cells and Na+/K+ ATPase inhibition. Calotropin, the compound with the highest degree of selectivity for BT-549 cells, increased intracellular Ca2+ in sensitive cells to a greater extent than in the resistant MDA-MB-231 cells. Further studies identified a second TNBC cell line, Hs578T, that is also highly sensitive to the cardenolides, and mechanistic studies were conducted to identify commonalities among the sensitive cell lines. Experiments showed that both cardenolide-sensitive cell lines expressed higher mRNA levels of the Na+/Ca2+ exchanger NCX1 than resistant TNBC cells. This suggests that NCX1 could be a biomarker to identify TNBC patients that might benefit from the clinical administration of a cardiac glycoside for anticancer indications.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Calotropis/química , Cardenolídeos/farmacologia , Neoplasias de Mama Triplo Negativas/patologia , Biomarcadores Tumorais/metabolismo , Cálcio/metabolismo , Cardenolídeos/química , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Estrutura Molecular , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Relação Estrutura-Atividade , Neoplasias de Mama Triplo Negativas/metabolismo
11.
J Nat Prod ; 83(6): 2010-2024, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32510949

RESUMO

The structures of four leucinostatin analogues (1-4) from Ophiocordyceps spp. and Purpureocillium spp. were determined together with six known leucinostatins [leucinostatins B (5), A (6), B2 (7), A2 (8), F (9), and D (10)]. The structures of the metabolites were established using a combination of analytical methods including HRESIMS and MS/MS experiments, 1D and 2D NMR spectroscopy, chiral HPLC, and advanced Marfey's analysis of the acid hydrolysate, as well as additional empirical and chemical methods. Compounds 1-10 were evaluated for their biological effects on triple negative breast cancer (TNBC) cells. Leucinostatins 1-10 showed selective cytostatic activities in MDA-MB-453 and SUM185PE cells representing the luminal androgen receptor subtype of TNBC. This selective activity motivated further investigation into the mechanism of action of leucinostatin B (5). The results demonstrate that this peptidic fungal metabolite rapidly inhibits mTORC1 signaling in leucinostatin-sensitive TNBC cell lines, but not in leucinostatin-resistant cells. Leucinostatins have been shown to repress mitochondrial respiration through inhibition of the ATP synthase, and we demonstrated that both the mTORC1 signaling and LAR-selective activities of 5 were recapitulated by oligomycin. Thus, inhibition of the ATP synthase with either leucinostatin B or oligomycin is sufficient to selectively impede mTORC1 signaling and inhibit the growth of LAR-subtype cells.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Ascomicetos/química , Cordyceps/química , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Hidrólise , Espectroscopia de Ressonância Magnética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Consumo de Oxigênio , Receptores Androgênicos/efeitos dos fármacos , Espectrometria de Massas por Ionização por Electrospray
12.
J Nat Prod ; 83(3): 584-592, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32105068

RESUMO

An extract prepared from the fruit of Choerospondias axillaris exhibited differential cytotoxic effects when tested in a panel of pediatric cancer cell lines [Ewing sarcoma (A-673), rhabdomyosarcoma (SJCRH30), medulloblastoma (D283), and hepatoblastoma (Hep293TT)]. Bioassay-guided fractionation led to the purification of five new hydroquinone-based metabolites, choerosponols A-E (1-5), bearing unsaturated hydrocarbon chains. The structures of the natural products were determined using a combination of 1D and 2D NMR, HRESIMS, ECD spectroscopy, and Mosher ester analyses. The purified compounds were evaluated for their antiproliferative and cytotoxic activities, revealing that 1, which contains a benzofuran moiety, exhibited over 50-fold selective antiproliferative activity against Ewing sarcoma and medulloblastoma cells with growth inhibitory (GI50) values of 0.19 and 0.07 µM, respectively. The effects of 1 were evaluated in a larger panel of cancer cell lines, and these data were used in turn to interrogate the Project Achilles cancer dependency database, leading to the identification of the MCT1 transporter as a functional target of 1. These data highlight the utility of publicly available cancer dependency databases such as Project Achilles to facilitate the identification of the mechanisms of action of compounds with selective activities among cancer cell lines, which can be a major challenge in natural products drug discovery.


Assuntos
Anacardiaceae/química , Antineoplásicos Fitogênicos/farmacologia , Extratos Vegetais/farmacologia , Linhagem Celular Tumoral , Frutas/química , Humanos , Estrutura Molecular , Compostos Fitoquímicos/farmacologia , Vietnã
13.
Phytochemistry ; 173: 112278, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32078832

RESUMO

Following the discovery of a new class of compounds that inhibit the mucosa-associated lymphoid tissue lymphoma translocation 1 (MALT1) protease in a prior study, further chemical investigation of the Dictyosporium digitatum fungus resulted in the identification of 16 additional metabolites, including 12 undescribed compounds (1-12). The constitution and relative configuration of these new molecules were established by comprehensive NMR and HRMS analyses. Their absolute configurations were determined by employing Mosher's ester analysis and TDDFT ECD calculations. Two sesquiterpenes, dictyosporins A (1) and B (2), possess an undescribed eudesmen-type of structural scaffold. The ability of the isolated compounds to inhibit MALT1 proteolytic activity was evaluated, but none of them exhibited significant inhibition.


Assuntos
Ascomicetos , Sesquiterpenos , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Solo
14.
J Nat Prod ; 82(6): 1694-1703, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31136174

RESUMO

Aflatoxin B1 (AfB1) ranks among the most potent liver carcinogens known, and the accidental or intentional exposure of humans and livestock to this toxin remains a serious global threat. One protective measure that had been proposed is employing small-molecule therapeutics capable of mitigating the toxicity of AfB1; however, to date, these efforts have had little clinical success. To identify molecular scaffolds that reduce the toxicity of AfB1, we developed a cell-based high-throughput high-content imaging assay that enabled our team to test natural products (pure compounds, fractions, and extracts) for protection of monolayers and spheroids composed of HepG2 liver cells against AfB1. The spheroid assay showed notable potential for further development, as it afforded greater sensitivity of HepG2 cells to AfB1, which is believed to better mimic the in vivo response of hepatocytes to the toxin. One of the most bioactive compounds to arise from this investigation was alternariol-9-methyl ether (1, purified from an Alternaria sp. isolate), which inspired the synthesis and testing of several structurally related molecules. Based on these findings, it is proposed that several types of natural and synthetic polyarene molecules that have undergone oxidative functionalization (e.g., compounds containing 3-methoxyphenol moieties) are promising starting points for the development of new agents that protect against AfB1 toxicity.


Assuntos
Aflatoxina B1/farmacologia , Aflatoxina B1/toxicidade , Antineoplásicos Fitogênicos/farmacologia , Carcinógenos/toxicidade , Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Aflatoxina B1/química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Produtos Biológicos/farmacologia , Carcinógenos/química , Hepatócitos/química , Humanos , Fígado/química , Estrutura Molecular , Substâncias Protetoras/química
15.
J Nat Prod ; 82(4): 886-894, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30865445

RESUMO

A Rhizopus sp. culture containing an endosymbiont partner ( Burkholderia sp.) was obtained through a citizen-science-based soil-collection program. An extract prepared from the pair of organisms exhibited strong inhibition of Ewing sarcoma cells and was selected for bioassay-guided fractionation. This led to the purification of rhizoxin (1), a potent antimitotic agent that inhibited microtubule polymerization, along with several new (2-5) and known (6) analogues of 1. The structures of 2-6 were established using a combination of NMR data analysis, while the configurations of the new stereocenters were determined using ROESY spectroscopy and comparison of GIAO-derived and experimental data for NMR chemical shift and 3 JHH coupling values. Whereas compound 1 showed modest selectivity for Ewing sarcoma cell lines carrying the EWSR1/ FLI1 fusion gene, the other compounds were determined to be inactive. Chemically, compound 2 stands out from other rhizoxin analogues because it is the first member of this class that is reported to contain a one-carbon-smaller 15-membered macrolactone system. Through a combination of experimental and computational tests, we determined that 2 is likely formed via an acid-catalyzed Meinwald rearrangement from 1 because of the mild acidic culture environment created by the Rhizopus sp. isolate and its symbiont.


Assuntos
Compostos Macrocíclicos/química , Compostos Macrocíclicos/farmacocinética , Macrolídeos/química , Macrolídeos/farmacocinética , Estresse Fisiológico , Burkholderia/química , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Rhizopus/química , Sarcoma de Ewing/patologia , Relação Estrutura-Atividade , Simbiose
16.
J Nat Prod ; 82(4): 928-936, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30830773

RESUMO

An extract of the plant Anacolosa clarkii was obtained from the NCI Natural Products Repository, and it showed cytotoxic activity toward several types of pediatric solid tumor cell lines. Bioassay-guided fractionation led to the purification of eight new clerodane diterpenes [anacolosins A-F (1-6) and corymbulosins X and Y (7 and 8)] and two known compounds (9 and 10) that contained an isozuelanin skeleton. The structures of the new natural products were determined using 1D and 2D NMR and HRESIMS data, while the relative and absolute configurations of the compounds were assessed using a combination of 1H NMR coupling constant data, ROESY experiments, ECD (electronic circular dichroism) and VCD (vibrational circular dichroism) spectroscopy, chemical methods (including Mosher and 2-naphthacyl esterification), and chiral HPLC analyses. The purified natural products exhibited a range of cytotoxic activities against cell lines representing four pediatric cancer types (i.e., rhabdomyosarcoma, Ewing sarcoma, medulloblastoma, and hepatoblastoma) with total growth inhibitory (TGI) values in the range 0.2-4.1 µM. The rhabdomyosarcoma and medulloblastoma cell lines showed higher sensitivity to compounds 1-4, which are the first compounds reported to contain an isozuelanin skeleton and feature keto carbonyl groups at the C-6 positions. In contrast, the hepatoblastoma cell line was modestly more sensitive to 7-10, which contained a C-6 hydroxy group moiety.


Assuntos
Diterpenos/farmacologia , Linhagem Celular Tumoral , Criança , Cromatografia Líquida de Alta Pressão , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Espectrometria de Massas
17.
J Nat Prod ; 82(1): 154-162, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30600998

RESUMO

Bioassay-guided separation of an extract from a Dictyosporium sp. isolate led to the identification of six new compounds, 1-6, together with five known compounds, 7-11. The structures of the new compounds were primarily established by extensive 1D and 2D NMR experiments. The absolute configurations of compounds 3-6 were determined by comparison of their experimental electronic circular dichroism (ECD) spectra with DFT quantum mechanical calculated ECD spectra. Compounds 3-5 possess novel structural scaffolds, and biochemical studies revealed that oxepinochromenones 1 and 7 inhibited the activity of MALT1 protease.


Assuntos
Inibidores Enzimáticos/isolamento & purificação , Fungos/metabolismo , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia
18.
J Nutr Biochem ; 55: 59-67, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29413490

RESUMO

Dried plum supplementation has been shown to enhance bone formation while suppressing bone resorption. Evidence from previous studies has demonstrated that these responses can be attributed in part to the fruit's polyphenolic compounds. The purpose of this study was to identify the most bioactive polyphenolic fractions of dried plum with a focus on their osteogenic activity and to investigate their mechanisms of action under normal and inflammatory conditions. Utilizing chromatographic techniques, six fractions of polyphenolic compounds were prepared from a crude extract of dried plum. Initial screening assays revealed that two fractions (DP-FrA and DP-FrB) had the greatest osteogenic potential. Subsequent experiments using primary bone-marrow-derived osteoblast cultures demonstrated these two fractions enhanced extracellular alkaline phosphatase (ALP), an indicator of osteoblast activity, and mineralized nodule formation under normal conditions. Both fractions enhanced bone morphogenetic protein (BMP) signaling, as indicated by increased Bmp2 and Runx2 gene expression and protein levels of phosphorylated Smad1/5. DP-FrB was most effective at up-regulating Tak1 and Smad1, as well as protein levels of phospho-p38. Under inflammatory conditions, TNF-α suppressed ALP and tended to decrease nodule formation (P=.0674). This response coincided with suppressed gene expression of Bmp2 and the up-regulation of Smad6, an inhibitor of BMP signaling. DP-FrA and DP-FrB partially normalized these responses. Our results show that certain fractions of polyphenolic compounds in dried plum up-regulate osteoblast activity by enhancing BMP signaling, and when this pathway is inhibited by TNF-α, the osteogenic response is attenuated.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Osteoblastos/efeitos dos fármacos , Polifenóis/farmacologia , Prunus domestica/química , Fosfatase Alcalina/metabolismo , Animais , Medula Óssea , Proteína Morfogenética Óssea 2/genética , Calcificação Fisiológica/efeitos dos fármacos , Células Cultivadas , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Smad6/genética , Proteína Smad6/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
19.
J Nat Prod ; 81(3): 579-593, 2018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29360362

RESUMO

The taccalonolides are a unique class of microtubule stabilizers isolated from Tacca spp. that have efficacy against drug-resistant tumors. Our previous studies have demonstrated that a C-15 acetoxy taccalonolide, AF, has superior in vivo antitumor efficacy compared to AJ, which bears a C-15 hydroxy group. With the goal of further improving the in vivo efficacy of this class of compounds, we semisynthesized and tested the biological activities of 28 new taccalonolides with monosubstitutions at C-7 or C-15 or disubstitutions at C-7 and C-25, covering a comprehensive range of substituents from formic acid to anthraquinone-2-carbonyl chloride. The resulting taccalonolide analogues with diverse C-7/C-15/C-25 modifications exhibited IC50 values from 2.4 nM to >20 µM, allowing for extensive in vitro structure-activity evaluations. This semisynthetic strategy was unable to provide a taccalonolide with improved therapeutic window due to hydrolysis of substituents at C-7 or C-15 regardless of size or steric bulk. However, two of the most potent new taccalonolides, bearing isovalerate modifications at C-7 or C-15, demonstrated potent and highly persistent antitumor activity in a drug-resistant xenograft model when administered intratumorally. This study demonstrates that targeted delivery of the taccalonolides to the tumor could be an effective, long-lasting approach to treat drug-resistant tumors.


Assuntos
Dioscoreaceae/química , Microtúbulos/efeitos dos fármacos , Esteroides/química , Esteroides/farmacologia , Animais , Antineoplásicos Fitogênicos/síntese química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Feminino , Células HeLa , Humanos , Camundongos , Camundongos Nus , Microtúbulos/química , Esteroides/síntese química
20.
J Med Chem ; 60(22): 9275-9289, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29053266

RESUMO

Targeted therapies for ER+/PR+ and HER2-amplified breast cancers have improved patient survival, but there are no therapies for triple negative breast cancers (TNBC) that lack expression of estrogen and progesterone receptors (ER/PR), or amplification or overexpression of HER2. Gene expression profiling of TNBC has identified molecular subtypes and representative cell lines. An extract of the Texas native plant Amyris texana was found to have selective activity against MDA-MB-453 cells, a model of the luminal androgen receptor (LAR) subtype of TNBC. Bioassay-guided fractionation identified two oxazole natural products with selective activity against this cell line. Conducted analog synthesis and structure-activity relationship studies provided analogs with more potent and selective activity against two LAR subtype cell line models, culminating in the discovery of compound 30 (CIDD-0067106). Lead compounds discovered have potent and selective antiproliferative activities, and mechanisms of action studies show they inhibit the activity of the mTORC1 pathway.


Assuntos
Antineoplásicos/farmacologia , Imidazóis/farmacologia , Oxazóis/farmacologia , Prolina/análogos & derivados , Receptores Androgênicos/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/isolamento & purificação , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Imidazóis/síntese química , Imidazóis/isolamento & purificação , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Oxazóis/síntese química , Oxazóis/isolamento & purificação , Prolina/síntese química , Prolina/isolamento & purificação , Prolina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Rutaceae/química , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Neoplasias de Mama Triplo Negativas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA