Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Front Immunol ; 14: 1285406, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38090582

RESUMO

Engineering immune cells to treat hematological malignancies has been a major focus of research since the first resounding successes of CAR-T-cell therapies in B-ALL. Several diseases can now be treated in highly therapy-refractory or relapsed conditions. Currently, a number of CD19- or BCMA-specific CAR-T-cell therapies are approved for acute lymphoblastic leukemia (ALL), diffuse large B-cell lymphoma (DLBCL), mantle cell lymphoma (MCL), multiple myeloma (MM), and follicular lymphoma (FL). The implementation of these therapies has significantly improved patient outcome and survival even in cases with previously very poor prognosis. In this comprehensive review, we present the current state of research, recent innovations, and the applications of CAR-T-cell therapy in a selected group of hematologic malignancies. We focus on B- and T-cell malignancies, including the entities of cutaneous and peripheral T-cell lymphoma (T-ALL, PTCL, CTCL), acute myeloid leukemia (AML), chronic myeloid leukemia (CML), chronic lymphocytic leukemia (CLL), classical Hodgkin-Lymphoma (HL), Burkitt-Lymphoma (BL), hairy cell leukemia (HCL), and Waldenström's macroglobulinemia (WM). While these diseases are highly heterogenous, we highlight several similarly used approaches (combination with established therapeutics, target depletion on healthy cells), targets used in multiple diseases (CD30, CD38, TRBC1/2), and unique features that require individualized approaches. Furthermore, we focus on current limitations of CAR-T-cell therapy in individual diseases and entities such as immunocompromising tumor microenvironment (TME), risk of on-target-off-tumor effects, and differences in the occurrence of adverse events. Finally, we present an outlook into novel innovations in CAR-T-cell engineering like the use of artificial intelligence and the future role of CAR-T cells in therapy regimens in everyday clinical practice.


Assuntos
Neoplasias Hematológicas , Leucemia Linfocítica Crônica de Células B , Leucemia Mieloide Aguda , Linfoma Difuso de Grandes Células B , Receptores de Antígenos Quiméricos , Humanos , Adulto , Receptores de Antígenos Quiméricos/genética , Inteligência Artificial , Linfócitos T/patologia , Microambiente Tumoral
3.
Cells ; 9(2)2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-32013131

RESUMO

The NAD-hydrolyzing ecto-enzyme CD38 is overexpressed by multiple myeloma and other hematological malignancies. We recently generated CD38-specific nanobodies, single immunoglobulin variable domains derived from heavy-chain antibodies naturally occurring in llamas. Nanobodies exhibit high solubility and stability, allowing easy reformatting into recombinant fusion proteins. Here we explore the utility of CD38-specific nanobodies as ligands for nanobody-based chimeric antigen receptors (Nb-CARs). We cloned retroviral expression vectors for CD38-specific Nb-CARs. The human natural killer cell line NK-92 was transduced to stably express these Nb-CARs. As target cells we used CD38-expressing as well as CRISPR/Cas9-generated CD38-deficient tumor cell lines (CA-46, LP-1, and Daudi) transduced with firefly luciferase. With these effector and target cells we established luminescence and flow-cytometry CAR-dependent cellular cytotoxicity assays (CARDCCs). Finally, the cytotoxic efficacy of Nb-CAR NK-92 cells was tested on primary patient-derived CD38-expressing multiple myeloma cells. NK-92 cells expressing CD38-specific Nb-CARs specifically lysed CD38-expressing but not CD38-deficient tumor cell lines. Moreover, the Nb-CAR-NK cells effectively depleted CD38-expressing multiple myeloma cells in primary human bone marrow samples. Our results demonstrate efficacy of Nb-CARs in vitro. The potential clinical efficacy of Nb-CARs in vivo remains to be evaluated.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , Linfoma de Burkitt/metabolismo , Mieloma Múltiplo/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Anticorpos de Domínio Único/metabolismo , Medula Óssea/patologia , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Humanos , Células Matadoras Naturais/metabolismo , Lentivirus/metabolismo , Luciferases/metabolismo , Luminescência , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA