Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732146

RESUMO

The ubiquitin-proteasome system (UPS) is an essential mechanism responsible for the selective degradation of substrate proteins via their conjugation with ubiquitin. Since cardiomyocytes have very limited self-renewal capacity, as they are prone to protein damage due to constant mechanical and metabolic stress, the UPS has a key role in cardiac physiology and pathophysiology. While altered proteasomal activity contributes to a variety of cardiac pathologies, such as heart failure and ischemia/reperfusion injury (IRI), the environmental cues affecting its activity are still unknown, and they are the focus of this work. Following a recent study by Ciechanover's group showing that amino acid (AA) starvation in cultured cancer cell lines modulates proteasome intracellular localization and activity, we tested two hypotheses in human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs, CMs): (i) AA starvation causes proteasome translocation in CMs, similarly to the observation in cultured cancer cell lines; (ii) manipulation of subcellular proteasomal compartmentalization is associated with electrophysiological abnormalities in the form of arrhythmias, mediated via altered intracellular Ca2+ handling. The major findings are: (i) starving CMs to AAs results in proteasome translocation from the nucleus to the cytoplasm, while supplementation with the aromatic amino acids tyrosine (Y), tryptophan (W) and phenylalanine (F) (YWF) inhibits the proteasome recruitment; (ii) AA-deficient treatments cause arrhythmias; (iii) the arrhythmias observed upon nuclear proteasome sequestration(-AA+YWF) are blocked by KB-R7943, an inhibitor of the reverse mode of the sodium-calcium exchanger NCX; (iv) the retrograde perfusion of isolated rat hearts with AA starvation media is associated with arrhythmias. Collectively, our novel findings describe a newly identified mechanism linking the UPS to arrhythmia generation in CMs and whole hearts.


Assuntos
Arritmias Cardíacas , Cálcio , Miócitos Cardíacos , Complexo de Endopeptidases do Proteassoma , Miócitos Cardíacos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Humanos , Cálcio/metabolismo , Animais , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/etiologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Estresse Fisiológico , Transporte Proteico , Ratos , Aminoácidos/metabolismo
2.
Cells ; 13(2)2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38247871

RESUMO

Aminoacyl-tRNA synthetases (aaRSs) are essential enzymes responsible for linking a transfer RNA (tRNA) with its cognate amino acid present in all the kingdoms of life. Besides their aminoacyl-tRNA synthetase activity, it was described that many of these enzymes can carry out non-canonical functions. They were shown to be involved in important biological processes such as metabolism, immunity, development, angiogenesis and tumorigenesis. In the present work, we provide evidence that tryptophanyl-tRNA synthetase might be involved in a negative feedback loop mitigating the expression of certain interferon-γ-induced genes. Mining the available TCGA and Gtex data, we found that WARS was highly expressed in cutaneous melanoma (SKCM) compared to other cancers and is of good prognosis for this particular cancer type. WARS expression correlates with genes involved in antigen processing and presentation but also transcription factors involved in IFN-γ signaling such as STAT1. In addition, WARS was found in complex with STAT1 in A375 cells treated with IFN-γ. Finally, we showed that knocking down WARS expression during IFN-γ stimulation further increases the expression of GBP2, APOL1, ISG15, HLA-A and IDO1.


Assuntos
Aminoacil-tRNA Sintetases , Melanoma , Neoplasias Cutâneas , Triptofano-tRNA Ligase , Humanos , Triptofano-tRNA Ligase/genética , Interferon gama/farmacologia , Retroalimentação , Melanoma/genética , RNA de Transferência , Expressão Gênica , Apolipoproteína L1
3.
Biosci Rep ; 43(12)2023 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-38131305

RESUMO

The chemokine receptor CXCR4 has become an attractive therapeutic target for HIV-1 infection, hematopoietic stem cell mobilization, and cancer metastasis. A wide variety of synthetic antagonists of CXCR4 have been developed and studied for a growing list of clinical applications. To compare the biological effects of different antagonists on CXCR4 functions and their common and/or distinctive molecular interactions with the receptor, we conducted head-to-head comparative cell-based biological and mutational analyses of the interactions with CXCR4 of eleven reported antagonists, including HC4319, DV3, DV1, DV1 dimer, V1, vMIP-II, CVX15, LY2510924, IT1t, AMD3100, and AMD11070 that were representative of different structural classes of D-peptides, L-peptide, natural chemokine, cyclic peptides, and small molecules. The results were rationalized by molecular modeling of CXCR4-antagonist interactions from which the common as well as different receptor binding sites of these antagonists were derived, revealing a number of important residues such as W94, D97, H113, D171, D262, and E288, mostly of negative charge. To further examine this finding, we designed and synthesized new antagonistic analogs by adding positively charged residues Arg to a D-peptide template to enhance the postulated charge-charge interactions. The newly designed analogs displayed significantly increased binding to CXCR4, which supports the notion that negatively charged residues of CXCR4 can engage in interactions with moieties of positive charge of the antagonistic ligands. The results from these mutational, modeling and new analog design studies shed new insight into the molecular mechanisms of different types of antagonists in recognizing CXCR4 and guide the development of new therapeutic agents.


Assuntos
Peptídeos , Transdução de Sinais , Peptídeos/genética , Peptídeos/farmacologia , Peptídeos/química , Modelos Moleculares , Receptores de Quimiocinas , Receptores CXCR4/genética
4.
Blood Rev ; 61: 101100, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37291017

RESUMO

Multiple myeloma (MM) is a malignant plasma cell disorder accounting for around 1.8% of all neoplastic diseases. Nowadays, clinicians have a broad arsenal of drugs at their disposal for the treatment of MM, such as proteasome inhibitors, immunomodulatory drugs, monoclonal antibodies, bispecific antibodies, CAR T-cell therapies and antibody-drug conjugates. In this paper we briefly highlight essential clinical elements relating to proteasome inhibitors, such as bortezomib, carfilzomib and ixazomib. Studies suggest that the early use of immunotherapy may improve outcomes significantly. Therefore, in our review we specifically focus on the combination therapy of proteasome inhibitors with novel immunotherapies and/or transplant. A high number of patients develop PI resistance. Thus, we also review new generation PIs, such as marizomib, oprozomib (ONX0912) and delanzomib (CEP-18770) and their combinations with immunotherapies.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , Complexo de Endopeptidases do Proteassoma/uso terapêutico , Bortezomib/uso terapêutico , Imunoterapia , Antineoplásicos/uso terapêutico
5.
Cell Death Differ ; 30(5): 1097-1154, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37100955

RESUMO

Apoptosis is a form of regulated cell death (RCD) that involves proteases of the caspase family. Pharmacological and genetic strategies that experimentally inhibit or delay apoptosis in mammalian systems have elucidated the key contribution of this process not only to (post-)embryonic development and adult tissue homeostasis, but also to the etiology of multiple human disorders. Consistent with this notion, while defects in the molecular machinery for apoptotic cell death impair organismal development and promote oncogenesis, the unwarranted activation of apoptosis promotes cell loss and tissue damage in the context of various neurological, cardiovascular, renal, hepatic, infectious, neoplastic and inflammatory conditions. Here, the Nomenclature Committee on Cell Death (NCCD) gathered to critically summarize an abundant pre-clinical literature mechanistically linking the core apoptotic apparatus to organismal homeostasis in the context of disease.


Assuntos
Apoptose , Caspases , Animais , Humanos , Apoptose/genética , Morte Celular , Caspases/genética , Caspases/metabolismo , Carcinogênese , Mamíferos/metabolismo
6.
Cancer Cell Int ; 23(1): 67, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055826

RESUMO

Nuclear factor-ĸB (NF-ĸB) is an important transcriptional regulator of key cellular processes, including cell cycle, immune response, and malignant transformation. We found that the ubiquitin ligase Kip1 ubiquitination-promoting complex subunit 1 (KPC1; also known as Ring finger protein 123 - RNF123) stimulates ubiquitination and limited proteasomal processing of the p105 NF-ĸB precursor to generate p50, the active subunit of the heterodimeric transcription factor. KPC1 binds to the ankyrin repeats' (AR) domain of NF-ĸB p105 via a short binding site of 7 amino acids-968-WILVRLW-974. Though mature NF-ĸB is overexpressed and constitutively active in different tumors, we found that overexpression of the p50 subunit, exerts a strong tumor suppressive effect. Furthermore, excess of KPC1 that stimulates generation of p50 from the p105 precursor, also results in a similar effect. Analysis of transcripts of glioblastoma and breast tumors revealed that excess of p50 stimulates expression of many NF-ĸB-regulated tumor suppressive genes. Using human xenograft tumor models in different immune compromised mice, we demonstrated that the immune system plays a significant role in the tumor suppressive activity of p50:p50 homodimer stimulating the expression of the pro-inflammatory cytokines CCL3, CCL4, and CCL5 in both cultured cells and in the xenografts. Expression of these cytokines leads to recruitment of macrophages and NK cells, which restrict tumor growth. Finally, p50 inhibits the expression of the programmed cell death-ligand 1 (PDL1), establishing an additional level of a strong tumor suppressive response mediated by the immune system.

7.
Cancer Res ; 83(11): 1762-1767, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-36880841

RESUMO

The ubiquitin-proteasome system (UPS) is responsible for up to 90% of intracellular protein degradation. Alterations in UPS are extensively involved in the development and advancement of malignant pathologies. Thus, the components of the UPS can become potential targets for cancer therapeutics. KPC1 is an E3 ubiquitin ligase component of the UPS that regulates key pathways and processes in cancer. KPC1 sustains the ubiquitination of cytoplasmic p27, determining its elimination and transition between cell-cycle phases. KPC1 also regulates NF-κB signaling by inducing ubiquitination of p105 to allow subsequent proteasomal processing to the functional form p50. It has been shown that the KPC1-p50 duo is reduced or absent in multiple malignancies and that therapeutic reinforcement of the functional axis can exhibit significant tumor suppressor activity. Here, we highlight the potential role of KPC1 as a tumor suppressor by fully describing its crucial role in p27 signaling and the canonical NF-κB pathway.


Assuntos
NF-kappa B , Neoplasias , Humanos , NF-kappa B/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
8.
Eur J Med Chem ; 244: 114804, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36208510

RESUMO

Interaction between ephrin receptor EphB4 and its ligand EFNB2 mediates bidirectional signaling important for cancer: forward EFNB2-to-EphB4 signaling that is tumor suppressive, and reverse EphB4-to-EFNB2 signaling that promotes angiogenesis important for tumor growth and metastasis. Molecular agents targeting these forward and reverse signals of EphB4-EFNB2 interaction can be used to probe the molecular mechanisms of these complex signaling pathways and develop new anticancer therapeutics. In this study, we applied a bivalent ligand design strategy to synthesize a novel dimeric peptide based on an antagonist TNYL-RAW. The dimeric peptide possessed higher EphB4 receptor binding affinity than the monomeric TNYL-RAW peptide. Interestingly, the dimerization of TNYL-RAW peptide converted a monomeric antagonist of EphB4 to a dimeric agonist. This dimeric agonist promoted EphB4 phosphorylation, internalization and degradation, reduced cancer cell motility, and inhibited tube formation of HUVEC. To investigate the mechanism of action of this bivalent dimeric peptide, FRET experiments and molecular dynamic simulation were conducted and suggested that this bivalent ligand recognizes two EphB4 simultaneously which may promote receptor dimerization and oligomerization. This was further supported by the study of this bivalent ligand containing deletion of critical residues on one of its monomers which impaired its simultaneous binding to two EphB4 and ability to cause EphB4 dimerization and phosphorylation. These results demonstrate the value of this novel bivalent agonist ligand of EphB4 as a probe of the bidirectional signaling of EphB4-EFNB2 and lead for cancer drug development.


Assuntos
Neoplasias , Receptor EphB4 , Humanos , Ligantes , Receptor EphB4/metabolismo , Efrina-B2/metabolismo , Receptores Proteína Tirosina Quinases , Peptídeos/farmacologia
9.
Blood Rev ; 56: 100971, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35595613

RESUMO

The ubiquitin-proteasome system is the crucial homeostatic mechanism responsible for the degradation and turnover of proteins. As such, alterations at this level are often associated with oncogenic processes, either through accumulation of undegraded pathway effectors or, conversely, excessive degradation of tumor-suppressing factors. Therefore, investigation of the ubiquitin- proteasome system has gained much attraction in recent years, especially in the context of hematological malignancies, giving rise to efficient therapeutics such as bortezomib for multiple myeloma. Current investigations are now focused on manipulating protein degradation via fine-tuning of the ubiquitination process through inhibition of deubiquitinating enzymes or development of PROTAC systems for stimulation of ubiquitination and protein degradation. On the other hand, the efficiency of Thalidomide derivates in myelodysplastic syndromes (MDS), such as Lenalidomide, acted as the starting point for the development of targeted leukemia-associated protein degradation molecules. These novel molecules display high efficiency in overcoming the limitations of current therapeutic regimens, such as refractory diseases. Therefore, in this manuscript we will address the therapeutic opportunities and strategies based on the ubiquitin-proteasome system, ranging from the modulation of deubiquitinating enzymes and, conversely, describing the potential of modern targeted protein degrading molecules and their progress into clinical implementation.


Assuntos
Leucemia Mieloide Aguda , Mieloma Múltiplo , Síndromes Mielodisplásicas , Transtornos Mieloproliferativos , Humanos , Ubiquitina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/uso terapêutico , Lenalidomida/uso terapêutico , Talidomida/farmacologia , Talidomida/uso terapêutico , Bortezomib/uso terapêutico , Descoberta de Drogas , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/patologia , Mieloma Múltiplo/metabolismo , Enzimas Desubiquitinantes/uso terapêutico
10.
Cell Rep ; 38(8): 110418, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35196484

RESUMO

By establishing multi-omics pipelines, we uncover overexpression and gene copy-number alterations of nucleoporin-93 (NUP93), a nuclear pore component, in aggressive human mammary tumors. NUP93 overexpression enhances transendothelial migration and matrix invasion in vitro, along with tumor growth and metastasis in animal models. These findings are supported by analyses of two sets of naturally occurring mutations: rare oncogenic mutations and inactivating familial nephrotic syndrome mutations. Mechanistically, NUP93 binds with importins, boosts nuclear transport of importins' cargoes, such as ß-catenin, and activates MYC. Likewise, NUP93 overexpression enhances the ultimate nuclear transport step shared by additional signaling pathways, including TGF-ß/SMAD and EGF/ERK. The emerging addiction to nuclear transport exposes vulnerabilities of NUP93-overexpressing tumors. Congruently, myristoylated peptides corresponding to the nuclear translocation signals of SMAD and ERK can inhibit tumor growth and metastasis. Our study sheds light on an emerging hallmark of advanced tumors, which derive benefit from robust nucleocytoplasmic transport.


Assuntos
Neoplasias da Mama , Complexo de Proteínas Formadoras de Poros Nucleares , Transporte Ativo do Núcleo Celular , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Feminino , Humanos , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Eur J Med Chem ; 231: 114150, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35124530

RESUMO

Targeting the protein-protein interactions involving CXCR4, a member of chemokine receptor family and G-protein-coupled receptor superfamily, has become an attractive therapeutic strategy for HIV-1 infection, hematopoietic stem cell mobilization, and cancer metastasis. As such, new small molecule CXCR4 antagonists are needed to offer therapeutic alternatives with enhanced clinical outcomes. Here, employing a fragment integrational approach we designed and synthesized a new and potent small molecule CXCR4 antagonist (named as HF51116), as well as a fluorescent (FITC)-labeled HF51116 (FITC-HF51116). HF51116 exhibited very high CXCR4 binding affinity with IC50 of 12 nM in competitive binding with a CXCR4 specific antibody 12G5, which is comparable to the wild type chemokines or synthetic peptides of much larger molecular sizes. Direct binding measurement using FITC-HF51116 further revealed the compound's high CXCR4 affinity. HF51116 strongly antagonized SDF-1α-induced cell migration, calcium mobilization, and CXCR4 internalization. Furthermore, HF51116 inhibited HIV-1 infection via CXCR4, demonstrating its antiviral therapeutic potential. The mechanism of HF51116-CXCR4 interaction was analyzed by site-directed mutagenesis and molecular modeling which suggested that the compound recognizes the minor and major subpockets of CXCR4. Its binding to CXCR4 was found to block G protein-dependent downstream signal pathways as detected by luciferase reporter assays. With its potent bioactivities and asymmetric structure amenable to chemical diversification, HF51116 may serve as a prototype for developing a new class of CXCR4-targeted therapeutics and proof of the concept of similar strategies for studying other GPCRs.


Assuntos
Infecções por HIV , Receptores CXCR4 , Ligação Competitiva , Quimiocina CXCL12 , Humanos , Modelos Moleculares , Transdução de Sinais
12.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34893540

RESUMO

Cellular homeostasis requires the sensing of and adaptation to intracellular oxygen (O2) and reactive oxygen species (ROS). The Arg/N-degron pathway targets proteins that bear destabilizing N-terminal residues for degradation by the proteasome or via autophagy. Under normoxic conditions, the N-terminal Cys (Nt-Cys) residues of specific substrates can be oxidized by dioxygenases such as plant cysteine oxidases and cysteamine (2-aminoethanethiol) dioxygenases and arginylated by ATE1 R-transferases to generate Arg-CysO2(H) (R-CO2). Proteins bearing the R-CO2 N-degron are targeted via Lys48 (K48)-linked ubiquitylation by UBR1/UBR2 N-recognins for proteasomal degradation. During acute hypoxia, such proteins are partially stabilized, owing to decreased Nt-Cys oxidation. Here, we show that if hypoxia is prolonged, the Nt-Cys of regulatory proteins can be chemically oxidized by ROS to generate Arg-CysO3(H) (R-CO3), a lysosomal N-degron. The resulting R-CO3 is bound by KCMF1, a N-recognin that induces K63-linked ubiquitylation, followed by K27-linked ubiquitylation by the noncanonical N-recognin UBR4. Autophagic targeting of Cys/N-degron substrates is mediated by the autophagic N-recognin p62/SQTSM-1/Sequestosome-1 through recognition of K27/K63-linked ubiquitin (Ub) chains. This Cys/N-degron-dependent reprogramming in the proteolytic flux is important for cellular homeostasis under both chronic hypoxia and oxidative stress. A small-compound ligand of p62 is cytoprotective under oxidative stress through its ability to accelerate proteolytic flux of K27/K63-ubiquitylated Cys/N-degron substrates. Our results suggest that the Nt-Cys of conditional Cys/N-degron substrates acts as an acceptor of O2 to maintain both O2 and ROS homeostasis and modulates half-lives of substrates through either the proteasome or lysosome by reprogramming of their Ub codes.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Proteínas de Neoplasias/metabolismo , Estresse Oxidativo/fisiologia , Oxigênio/metabolismo , Animais , Autofagia , Linhagem Celular , Proteínas Ativadoras de GTPase/genética , Regulação da Expressão Gênica , Homeostase , Humanos , Interleucinas/genética , Interleucinas/metabolismo , Redes e Vias Metabólicas , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Oxirredução , Oxigênio/química
13.
Mol Cell Oncol ; 8(5): 1989939, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34859148

RESUMO

Membraneless condensates have recently caught the attention of biologists as hubs for cellular components required for catalysis of basic processes. Whether they are real has become the center of heated discussion where the main issues are their mechanism of assembly and function. A recent study describing these condensates as hubs for protein degradation by the ubiquitin system may shed a new light on this recent development in cell biology.

14.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34873064

RESUMO

Nuclear factor κB (NF-κB) is an important transcriptional regulator that is involved in numerous cellular processes, including cell proliferation, immune response, cell survival, and malignant transformation. It relies on the ubiquitin-proteasome system (UPS) for several of the steps in the concerted cascade of its activation. Previously, we showed that the ubiquitin (Ub) ligase KPC1 is involved in ubiquitination and limited proteasomal processing of the NF-κB1 p105 precursor to generate the p50 active subunit of the "canonical" heterodimeric transcription factor p50-p65. Overexpression of KPC1 with the generation of an excessive amount of p50 was shown to suppress tumors, an effect which is due to multiple mechanisms. Among them are suppression of expression of programmed cell death-ligand 1 (PD-L1), overexpression of a broad array of tumor suppressors, and secretion of cytokines which results in recruitment of suppressive immune cells into the tumor. Here, we show that the site of KPC1 to which p105 binds is exceptionally short and is made up of the seven amino acids WILVRLW. Attachment of this short stretch to a small residual part (∼20%) of the ligase that also contains the essential Really Interesting New Gene (RING)-finger domain was sufficient to bind p105, conjugate to it Ub, and suppress tumor growth in an animal model. Fusion of the seven amino acids to a Von Hippel-Lindau protein (pVHL)-binding ligand (which serves as a "universal" ligase for many proteolysis-targeting chimeras; PROTACs) resulted in a compound that stimulated conjugation of Ub to p105 in a cell-free system and its processing to p50 in cells and restricted cell growth.


Assuntos
Subunidade p50 de NF-kappa B/metabolismo , NF-kappa B/metabolismo , Ubiquitina-Proteína Ligases/genética , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Humanos , NF-kappa B/genética , Neoplasias , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica/genética , Processamento de Proteína Pós-Traducional/fisiologia , Proteólise , Transdução de Sinais/fisiologia , Fator de Transcrição RelA/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/genética
15.
RSC Chem Biol ; 2(2): 513-522, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34179781

RESUMO

Cancer and other disease states can change the landscape of proteins post-translationally tagged with ubiquitin (Ub) chains. Molecules capable of modulating Ub chains are potential therapeutic agents, but their discovery represents a significant challenge. Recently, it was shown that de novo cyclic peptides, selected from trillion-member random libraries, are capable of binding particular Ub chains. However, these peptides were overwhelmingly proteinogenic, so the prospect of in vivo activity was uncertain. Here, we report the discovery of small, non-proteinogenic cyclic peptides, rich in non-canonical features like N-methylation, which can tightly and specifically bind Lys48-linked Ub chains. These peptides engage three Lys48-linked Ub units simultaneously, block the action of deubiquitinases and the proteasome, induce apoptosis in vitro, and attenuate tumor growth in vivo. This highlights the potential of non-proteinogenic cyclic peptide screening to rapidly find in vivo-active leads, and the targeting of ubiquitin chains as a promising anti-cancer mechanism of action.

16.
Eur J Med Chem ; 215: 113267, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33639344

RESUMO

Inhibitors of the proteasome have been extensively studied for their applications in the treatment of human diseases such as hematologic malignancies, autoimmune disorders, and viral infections. Many of the proteasome inhibitors reported in the literature target the non-primed site of proteasome's substrate binding pocket. In this study, we designed, synthesized and characterized a series of novel α-keto phenylamide derivatives aimed at both the primed and non-primed sites of the proteasome. In these derivatives, different substituted phenyl groups at the head group targeting the primed site were incorporated in order to investigate their structure-activity relationship and optimize the potency of α-keto phenylamides. In addition, the biological effects of modifications at the cap moiety, P1, P2 and P3 side chain positions were explored. Many derivatives displayed highly potent biological activities in proteasome inhibition and anticancer activity against a panel of six cancer cell lines, which were further rationalized by molecular modeling analyses. Furthermore, a representative α-ketoamide derivative was tested and found to be active in inhibiting the cellular infection of SARS-CoV-2 which causes the COVID-19 pandemic. These results demonstrate that this new class of α-ketoamide derivatives are potent anticancer agents and provide experimental evidence of the anti-SARS-CoV-2 effect by one of them, thus suggesting a possible new lead to develop antiviral therapeutics for COVID-19.


Assuntos
Amidas/farmacologia , Antineoplásicos/farmacologia , Antivirais/farmacologia , Cetonas/farmacologia , Inibidores de Proteassoma/farmacologia , SARS-CoV-2/efeitos dos fármacos , Amidas/síntese química , Amidas/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Antivirais/síntese química , Antivirais/metabolismo , Sítios de Ligação , Calpaína/química , Calpaína/metabolismo , Linhagem Celular Tumoral , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Cetonas/síntese química , Cetonas/metabolismo , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/síntese química , Inibidores de Proteassoma/metabolismo , Ligação Proteica , Relação Estrutura-Atividade
17.
Stem Cell Res Ther ; 12(1): 17, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413613

RESUMO

BACKGROUND: Hematopoietic stem cell (HSC) transplantation is an effective treatment strategy for many types of diseases. Peripheral blood (PB) is the most commonly used source of bone marrow (BM)-derived stem cells for current HSC transplantation. However, PB usually contains very few HSCs under normal conditions, as these cells are normally retained within the BM. This retention depends on the interaction between the CXC chemokine receptor 4 (CXCR4) expressed on the HSCs and its natural chemokine ligand, stromal cell-derived factor (SDF)-1α (also named CXCL12) present in the BM stromal microenvironment. In clinical practice, blocking this interaction with a CXCR4 antagonist can induce the rapid mobilization of HSCs from the BM into the PB. METHODS: C3H/HEJ, DBA/2, CD45.1+, and CD45.2+ mice and monkeys were employed in colony-forming unit (CFU) assays, flow cytometry assays, and competitive/noncompetitive transplantation assays, to assess the short-term mobilization efficacy of HF51116 and the long-term repopulating (LTR) ability of HSCs. Kinetics of different blood cells and the concentration of HF51116 in PB were also explored by blood routine examinations and pharmacokinetic assays. RESULTS: In this paper, we report that a novel small molecule CXCR4 antagonist, HF51116, which was designed and synthesized by our laboratory, can rapidly and potently mobilize HSCs from BM to PB in mice and monkeys. HF51116 not only mobilized HSCs when used alone but also synergized with the mobilizing effects of granulocyte colony-stimulating factor (G-CSF) after co-administration. Following mobilization by HF51116 and G-CSF, the long-term repopulating (LTR) and self-renewing HSCs were sufficiently engrafted in primary and secondary lethally irradiated mice and were able to rescue and support long-term mouse survival. In monkeys, HF51116 exhibited strong HSC mobilization activity and quickly reached the highest in vivo blood drug concentration. CONCLUSIONS: These results demonstrate that HF51116 is a new promising stem cell mobilizer which specifically targets CXCR4 and merits further preclinical and clinical studies.


Assuntos
Quimiocina CXCL12 , Receptores CXCR4 , Animais , Fator Estimulador de Colônias de Granulócitos , Haplorrinos , Células-Tronco Hematopoéticas , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos DBA , Receptores CXCR4/genética
18.
Biochem Biophys Res Commun ; 558: 224-230, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32933748

RESUMO

The NF-κB transcription factor is involved in inflammation and cell proliferation, survival, and transformation. It is a heterodimer made of p50 or p52 and a member of the Rel family of proteins. p50 and p52 are derived from limited ubiquitin- and proteasome-mediated proteolytic processing of the larger precursors p105 and p100, respectively. Both precursors can be either processed or completely degraded by the ubiquitin-proteasome system. Previous work in our laboratory identified KPC1 as a ubiquitin ligase that mediates processing of p105 to the p50 subunit. Overexpression of the ligase leads to increased level of p50 with a resultant marked tumor-suppressive effect. In the present study, we identify FBXO7, a known ubiquitin ligase that binds to p105 and ubiquitinates it, but surprisingly, leads to its accumulation and to that of p65 - the Rel partner of p50 - and to increased cell proliferation. Importantly, a ΔF-Box mutant of FBXO7 which is inactive has similar effects on accumulation of p105 and cell proliferation, strongly suggesting that p105 is a pseudo substrate of FBXO7.


Assuntos
Proteínas F-Box/metabolismo , Subunidade p50 de NF-kappa B/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Proliferação de Células/fisiologia , Estabilidade Enzimática , Proteínas F-Box/antagonistas & inibidores , Proteínas F-Box/genética , Células HEK293 , Células HeLa , Humanos , Células K562 , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Subunidade p50 de NF-kappa B/antagonistas & inibidores , Subunidade p50 de NF-kappa B/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Precursores de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Proteólise , RNA Interferente Pequeno/genética , Especificidade por Substrato , Fator de Transcrição RelA/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitinação
19.
Proc Natl Acad Sci U S A ; 117(47): 29823-29831, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33168738

RESUMO

Nuclear factor-ĸB (NF-ĸB) transcription factor is a family of essential regulators of the immune response and cell proliferation and transformation. A typical factor is a heterodimer made of either p50 or p52, which are limited processing products of either p105 or p100, respectively, and a member of the Rel family of proteins, typically p65. The transcriptional program of NF-ĸB is tightly regulated by the composition of the dimers. In our previous work, we demonstrated that the ubiquitin ligase KPC1 is involved in ubiquitination and proteasomal processing of p105 to generate p50. Its overexpression and the resulting high level of p50 stimulates transcription of a broad array of tumor suppressors. Here we demonstrate that additional mechanisms are involved in the p50-mediated tumor-suppressive effect. p50 down-regulates expression of a major immune checkpoint inhibitor, the programmed cell death-ligand 1 (PD-L1), both in cells and in tumors. Importantly, the suppression is abrogated by overexpression of p65. This highlights the importance of the cellular quantities of the two different subunits of NF-ĸB which determine the composition of the dimer. While the putative p50 homodimer is tumor-suppressive, the "canonical" p50p65 heterodimer is oncogenic. We found that an additional mechanism is involved in the tumor-suppressive phenomenon: p50 up-regulates expression of the proinflammatory chemokines CCL3, CCL4, and CCL5, which in turn recruit into the tumors active natural killer (NK) cells and macrophages. Overall, p50 acts as a strong tumor suppressor via multiple mechanisms, including overexpression of tumor suppressors and modulation of the tumor microenvironment by recruiting active immune cells.


Assuntos
Antígeno B7-H1/metabolismo , Regulação Neoplásica da Expressão Gênica/imunologia , Subunidade p50 de NF-kappa B/metabolismo , Neoplasias/genética , Ubiquitina-Proteína Ligases/metabolismo , Transferência Adotiva , Animais , Antígeno B7-H1/imunologia , Linhagem Celular Tumoral , Quimiocinas/imunologia , Quimiocinas/metabolismo , Células HEK293 , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/transplante , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Neoplasias/imunologia , Neoplasias/patologia , Cultura Primária de Células , Fator de Transcrição RelA/metabolismo , Ativação Transcricional/imunologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Ubiquitinação/genética , Ubiquitinação/imunologia , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Cancers (Basel) ; 12(5)2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32349217

RESUMO

This study examined the role of the ubiquitin E3-ligase RNF123 in modulating downstream NF-κB1 targets in glioblastoma (GB) tumor progression. Our findings revealed an oncogenic pathway (miR-155-5p-RNF123-NF-κB1-p50-SerpinE1) that may represent a new therapeutic target pathway for GB patients with isocitrate dehydrogenase 1 and 2 (IDH) WT (wild type). Mechanistically, we demonstrated that RNF123 is downregulated in IDH WT GB patients and leads to the reduction of p50 levels. RNA-sequencing, reverse-phase protein arrays, and in vitro functional assays on IDH WT GB cell lines with RNF123 overexpression showed that SerpinE1 was a downstream target that is negatively regulated by RNF123. SERPINE1 knockdown reduced the proliferation and invasion of IDH WT GB cell lines. Both SerpinE1 and miR-155-5p overexpression negatively modulated RNF123 expression. In clinical translational analysis, RNF123, SerpinE1, and miR-155-5p were all associated with poor outcomes in GB patients. Multivariable analysis in IDH WT GB patients showed that concurrent low RNF123 and high SerpinE1 was an independent prognostic factor in predicting poor overall survival (p < 0.001, hazard ratio (HR) = 2.93, 95% confidence interval (CI) 1.7-5.05), and an increased risk of recurrence (p < 0.001, relative risk (RR) = 3.56, 95% CI 1.61-7.83).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA