Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Biomed Pharmacother ; 178: 117191, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39079263

RESUMO

Casein kinase II (CK2) has recently emerged as a pivotal mediator in the propagation of inflammation across various diseases. Nevertheless, its role in the pathogenesis of sepsis remains unexplored. Here, we investigated the involvement of CK2 in sepsis progression and the potential beneficial effects of silmitasertib, a selective and potent CK2α inhibitor, currently under clinical trials for COVID-19 and cancer. Sepsis was induced by caecal ligation and puncture (CLP) in four-month-old C57BL/6OlaHsd mice. One hour after the CLP/Sham procedure, animals were assigned to receive silmitasertib (50 mg/kg/i.v.) or vehicle. Plasma/organs were collected at 24 h for analysis. A second set of experiments was performed for survival rate over 120 h. Septic mice developed multiorgan failure, including renal dysfunction due to hypoperfusion (reduced renal blood flow) and increased plasma levels of creatinine. Renal derangements were associated with local overactivation of CK2, and downstream activation of the NF-ĸB-iNOS-NO axis, paralleled by a systemic cytokine storm. Interestingly, all markers of injury/inflammation were mitigated following silmitasertib administration. Additionally, when compared to sham-operated mice, sepsis led to vascular hyporesponsiveness due to an aberrant systemic and local release of NO. Silmitasertib restored sepsis-induced vascular abnormalities. Overall, these pharmacological effects of silmitasertib significantly reduced sepsis mortality. Our findings reveal, for the first time, the potential benefits of a selective and potent CK2 inhibitor to counteract sepsis-induced hyperinflammatory storm, vasoplegia, and ultimately prolonging the survival of septic mice, thus suggesting a pivotal role of CK2 in sepsis and silmitasertib as a novel powerful pharmacological tool for drug repurposing in sepsis.


Assuntos
Caseína Quinase II , Sepse , Animais , Masculino , Camundongos , Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Insuficiência de Múltiplos Órgãos/etiologia , Insuficiência de Múltiplos Órgãos/tratamento farmacológico , Insuficiência de Múltiplos Órgãos/prevenção & controle , Naftiridinas , Fenazinas , Inibidores de Proteínas Quinases/farmacologia , Pteridinas/farmacologia , Sepse/tratamento farmacológico , Sepse/complicações
2.
Int J Eat Disord ; 57(7): 1433-1446, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38650547

RESUMO

OBJECTIVE: Binge-eating disorder is an eating disorder characterized by recurrent binge-eating episodes, during which individuals consume excessive amounts of highly palatable food (HPF) in a short time. This study investigates the intricate relationship between repeated binge-eating episode and the transcriptional regulation of two key genes, adenosine A2A receptor (A2AAR) and dopamine D2 receptor (D2R), in selected brain regions of rats. METHOD: Binge-like eating behavior on HPF was induced through the combination of food restrictions and frustration stress (15 min exposure to HPF without access to it) in female rats, compared to control rats subjected to only restriction or only stress or none of these two conditions. After chronic binge-eating episodes, nucleic acids were extracted from different brain regions, and gene expression levels were assessed through real-time quantitative PCR. The methylation pattern on genes' promoters was investigated using pyrosequencing. RESULTS: The analysis revealed A2AAR upregulation in the amygdala and in the ventral tegmental area (VTA), and D2R downregulation in the nucleus accumbens in binge-eating rats. Concurrently, site-specific DNA methylation alterations at gene promoters were identified in the VTA for A2AAR and in the amygdala and caudate putamen for D2R. DISCUSSION: The alterations on A2AAR and D2R genes regulation highlight the significance of epigenetic mechanisms in the etiology of binge-eating behavior, and underscore the potential for targeted therapeutic interventions, to prevent the development of this maladaptive feeding behavior. These findings provide valuable insights for future research in the field of eating disorders. PUBLIC SIGNIFICANCE: Using an animal model with face, construct, and predictive validity, in which cycles of food restriction and frustration stress evoke binge-eating behavior, we highlight the significance of epigenetic mechanisms on adenosine A2A receptor (A2AAR) and dopamine D2 receptor (D2R) genes regulation. They could represent new potential targets for the pharmacological management of eating disorders characterized by this maladaptive feeding behavior.


Assuntos
Transtorno da Compulsão Alimentar , Bulimia , Receptor A2A de Adenosina , Receptores de Dopamina D2 , Recompensa , Animais , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D2/genética , Feminino , Ratos , Receptor A2A de Adenosina/genética , Receptor A2A de Adenosina/metabolismo , Bulimia/metabolismo , Bulimia/genética , Transtorno da Compulsão Alimentar/genética , Transtorno da Compulsão Alimentar/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Metilação de DNA , Área Tegmentar Ventral/metabolismo , Comportamento Alimentar , Núcleo Accumbens/metabolismo , Ratos Sprague-Dawley
3.
Pharmacol Res ; 195: 106875, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37517560

RESUMO

Neuromedin U (NMU) is a bioactive peptide produced in the gut and in the brain, with a role in multiple physiological processes. NMU acts by binding and activating two G protein coupled receptors (GPCR), the NMU receptor 1 (NMU-R1), which is predominantly expressed in the periphery, and the NMU receptor 2 (NMU-R2), mainly expressed in the central nervous system (CNS). In the brain, NMU and NMU-R2 are consistently present in the hypothalamus, commonly recognized as the main "feeding center". Considering its distribution pattern, NMU revealed to be an important neuropeptide involved in the regulation of food intake, with a powerful anorexigenic ability. This has been observed through direct administration of NMU and by studies using genetically modified animals, which revealed an obesity phenotype when the NMU gene is deleted. Thus, the development of NMU analogs or NMU-R2 agonists might represent a promising pharmacological strategy to treat obese individuals. Furthermore, NMU has been demonstrated to influence the non-homeostatic aspect of food intake, playing a potential role in binge eating behavior. This review aims to discuss and summarize the current literature linking the NMU system with obesity and binge eating behavior, focusing on the influence of NMU on food intake and the neuronal mechanisms underlying its anti-obesity properties. Pharmacological strategies to improve the pharmacokinetic profile of NMU will also be reported.


Assuntos
Bulimia , Neuropeptídeos , Hormônios Peptídicos , Animais , Comportamento Alimentar , Neuropeptídeos/uso terapêutico , Obesidade/tratamento farmacológico , Bulimia/tratamento farmacológico
4.
Front Immunol ; 13: 992614, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119089

RESUMO

Inducible T cell co-stimulator (ICOS), an immune checkpoint protein expressed on activated T cells and its unique ligand, ICOSL, which is expressed on antigen-presenting cells and non-hematopoietic cells, have been extensively investigated in the immune response. Recent findings showed that a soluble recombinant form of ICOS (ICOS-Fc) can act as an innovative immunomodulatory drug as both antagonist of ICOS and agonist of ICOSL, modulating cytokine release and cell migration to inflamed tissues. Although the ICOS-ICOSL pathway has been poorly investigated in the septic context, a few studies have reported that septic patients have reduced ICOS expression in whole blood and increased serum levels of osteopontin (OPN), that is another ligand of ICOSL. Thus, we investigated the pathological role of the ICOS-ICOSL axis in the context of sepsis and the potential protective effects of its immunomodulation by administering ICOS-Fc in a murine model of sepsis. Polymicrobial sepsis was induced by cecal ligation and puncture (CLP) in five-month-old male wild-type (WT) C57BL/6, ICOS-/-, ICOSL-/- and OPN-/- mice. One hour after the surgical procedure, either CLP or Sham (control) mice were randomly assigned to receive once ICOS-Fc, F119SICOS-Fc, a mutated form uncapable to bind ICOSL, or vehicle intravenously. Organs and plasma were collected 24 h after surgery for analyses. When compared to Sham mice, WT mice that underwent CLP developed within 24 h a higher clinical severity score, a reduced body temperature, an increase in plasma cytokines (TNF-α, IL-1ß, IL-6, IFN-γ and IL-10), liver injury (AST and ALT) and kidney (creatinine and urea) dysfunction. Administration of ICOS-Fc to WT CLP mice reduced all of these abnormalities caused by sepsis. Similar beneficial effects were not seen in CLP-mice treated with F119SICOS-Fc. Treatment of CLP-mice with ICOS-Fc also attenuated the sepsis-induced local activation of FAK, P38 MAPK and NLRP3 inflammasome. ICOS-Fc seemed to act at both sides of the ICOS-ICOSL interaction, as the protective effect was lost in septic knockout mice for the ICOS or ICOSL genes, whereas it was maintained in OPN knockout mice. Collectively, our data show the beneficial effects of pharmacological modulation of the ICOS-ICOSL pathway in counteracting the sepsis-induced inflammation and organ dysfunction.


Assuntos
Osteopontina , Sepse , Animais , Masculino , Camundongos , Creatinina , Citocinas/metabolismo , Proteínas de Checkpoint Imunológico , Imunidade , Imunomodulação , Ligante Coestimulador de Linfócitos T Induzíveis/genética , Ligante Coestimulador de Linfócitos T Induzíveis/metabolismo , Proteína Coestimuladora de Linfócitos T Induzíveis/genética , Inflamassomos , Inflamação , Interleucina-10 , Interleucina-6 , Ligantes , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas Quinases p38 Ativadas por Mitógeno , Sepse/tratamento farmacológico , Fator de Necrose Tumoral alfa , Ureia
5.
Front Immunol ; 13: 837180, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35178052

RESUMO

Sepsis and septic shock are associated with high mortality and are considered one of the major public health concerns. The onset of sepsis is known as a hyper-inflammatory state that contributes to organ failure and mortality. Recent findings suggest a potential role of two non-receptor protein tyrosine kinases, namely Focal adhesion kinase (FAK) and Proline-rich tyrosine kinase 2 (Pyk2), in the inflammation associated with endometriosis, cancer, atherosclerosis and asthma. Here we investigate the role of FAK-Pyk2 in the pathogenesis of sepsis and the potential beneficial effects of the pharmacological modulation of this pathway by administering the potent reversible dual inhibitor of FAK and Pyk2, PF562271 (PF271) in a murine model of cecal ligation and puncture (CLP)-induced sepsis. Five-month-old male C57BL/6 mice underwent CLP or Sham surgery and one hour after the surgical procedure, mice were randomly assigned to receive PF271 (25 mg/kg, s.c.) or vehicle. Twenty-four hours after surgery, organs and plasma were collected for analyses. In another group of mice, survival rate was assessed every 12 h over the subsequent 5 days. Experimental sepsis led to a systemic cytokine storm resulting in the formation of excessive amounts of both pro-inflammatory cytokines (TNF-α, IL-1ß, IL-17 and IL-6) and the anti-inflammatory cytokine IL-10. The systemic inflammatory response was accompanied by high plasma levels of ALT, AST (liver injury), creatinine, (renal dysfunction) and lactate, as well as a high, clinical severity score. All parameters were attenuated following PF271 administration. Experimental sepsis induced an overactivation of FAK and Pyk2 in liver and kidney, which was associated to p38 MAPK activation, leading to increased expression/activation of several pro-inflammatory markers, including the NLRP3 inflammasome complex, the adhesion molecules ICAM-1, VCAM-1 and E-selectin and the enzyme NOS-2 and myeloperoxidase. Treatment with PF271 inhibited FAK-Pyk2 activation, thus blunting the inflammatory abnormalities orchestrated by sepsis. Finally, PF271 significantly prolonged the survival of mice subjected to CLP-sepsis. Taken together, our data show for the first time that the FAK-Pyk2 pathway contributes to sepsis-induced inflammation and organ injury/dysfunction and that the pharmacological modulation of this pathway may represents a new strategy for the treatment of sepsis.


Assuntos
Quinase 1 de Adesão Focal/antagonistas & inibidores , Quinase 2 de Adesão Focal/antagonistas & inibidores , Inflamação/tratamento farmacológico , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Inflamação/fisiopatologia , Ligadura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Insuficiência de Múltiplos Órgãos/tratamento farmacológico , Insuficiência de Múltiplos Órgãos/fisiopatologia , Distribuição Aleatória , Sepse , Taxa de Sobrevida
6.
Molecules ; 26(5)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807712

RESUMO

BACKGROUND: Tart cherries (Prunus cerasus L.) are a rich source of anthocyanins. They are phytochemical flavonoids found in red and blue fruits, and vegetables that can reduce hyperlipidemia. Visceral Adipose Tissue (VAT) has emerged as a major player in driving obesity-related inflammatory response. METHODS: This study has investigated the potential positive effects of tart cherries on rats with Diet-Induced Obesity (DIO). In particular, the inflammatory status in retroperitoneal (RPW) and perigonadal (PGW) adipose tissue were studied. Rats were fed ad libitum for 17 weeks with a hypercaloric diet with the supplementation of tart cherries seeds powder (DS) and seeds powder plus tart cherries juice containing 1mg of anthocyanins (DJS). In RPW and PGW, expression of CRP, IL-1 ß, TNF-α, CCL2 and CD36, were measured by qRT-PCR, Western blot and immunohistochemistry techniques. RESULTS: No differences in the weight of RPW and PGW animals were found between DS and DJS groups compared to DIO rats. However, an increase of inflammatory markers was observed in DIO group in comparison with control lean rats. A modulation of these markers was evident upon tart cherry supplementation. CONCLUSION: Study results suggest that tart cherry enriched-diet did not modify the accumulation of visceral fat, but it decreased inflammatory markers in both tissues. Therefore, this supplementation could be useful, in combination with healthy lifestyles, to modify adipose tissue cell metabolism limiting-obesity related organ damage.


Assuntos
Biomarcadores/metabolismo , Sucos de Frutas e Vegetais , Gordura Intra-Abdominal/metabolismo , Obesidade/dietoterapia , Prunus avium/química , Animais , Antígenos CD36/genética , Antígenos CD36/metabolismo , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Regulação da Expressão Gênica , Gordura Intra-Abdominal/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Masculino , Obesidade/etiologia , Paniculite/dietoterapia , Paniculite/genética , Paniculite/metabolismo , Ratos Wistar , Sementes
7.
Eur J Med Chem ; 212: 113141, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33422983

RESUMO

Since its discovery, the dopamine D4 receptor (D4R) has been suggested to be an attractive target for the treatment of neuropsychiatric diseases. Novel findings have renewed the interest in such a receptor as an emerging target for the management of different diseases, including cancer, Parkinson's disease, alcohol or substance use disorders, eating disorders, erectile dysfunction and cognitive deficits. The recently resolved crystal structures of D4R in complexes with the potent ligands nemonapride and L-745870 strongly improved the knowledge on the molecular mechanisms involving the D4R functions and may help medicinal chemists in drug design. This review is focused on the recent development of the subtype selective D4R ligands belonging to classical or new chemotypes. Moreover, ligands showing functional selectivity toward G protein activation or ß-arrestin recruitment and the effects of selective D4R ligands on the above-mentioned diseases are discussed.


Assuntos
Antagonistas de Dopamina/farmacologia , Descoberta de Drogas , Neoplasias/tratamento farmacológico , Receptores de Dopamina D4/antagonistas & inibidores , Transtornos Relacionados ao Uso de Álcool/tratamento farmacológico , Animais , Disfunção Cognitiva/tratamento farmacológico , Antagonistas de Dopamina/síntese química , Antagonistas de Dopamina/química , Humanos , Ligantes , Doença de Parkinson/tratamento farmacológico , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico
8.
Brain Sci ; 12(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35053779

RESUMO

AIM: Nuclear factor kappa B (NF-κB) is known to play an important role in the inflammatory process which takes place after ischemic stroke. The major objective of the present study was to examine the effects of MEDS-23, a potent inhibitor of NF-κB, on clinical outcomes and brain inflammatory markers in post-ischemic stroke rats. MAIN METHODS: Initially, a Toxicity Experiment was performed to determine the appropriate dose of MEDS-23 for use in animals, as MEDS-23 was analyzed in vivo for the first time. We used the middle cerebral artery occlusion (MCAO) model for inducing ischemic stroke in rats. The effects of MEDS-23 (at 10 mg/kg, ip) on post-stroke outcomes (brain inflammation, fever, neurological deficits, mortality, and depression- and anxiety-like behaviours) was tested in several efficacy experiments. KEY FINDINGS: MEDS-23 was found to be safe and significantly reduced the severity of some adverse post-stroke outcomes such as fever and neurological deficits. Moreover, MEDS-23 significantly decreased prostaglandin E2 levels in the hypothalamus and hippocampus of post-stroke rats, but did not prominently alter the levels of interleukin-6 and tumor necrosis factor-α. SIGNIFICANCE: These results suggest that NF-κB inhibition is a potential therapeutic strategy for the treatment of ischemic stroke.

9.
Neuroendocrinology ; 111(12): 1201-1218, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33333517

RESUMO

INTRODUCTION: Food intake varies during the ovarian hormone/estrous cycle in humans and rodents, an effect mediated mainly by estradiol. A potential mediator of the central anorectic effects of estradiol is the neuropeptide relaxin-3 (RLN3) synthetized in the nucleus incertus (NI) and acting via the relaxin family peptide-3 receptor (RXFP3). METHODS: We investigated the relationship between RLN3/RXFP3 signaling and feeding behavior across the female rat estrous cycle. We used in situ hybridization to investigate expression patterns of Rln3 mRNA in NI and Rxfp3 mRNA in the hypothalamic paraventricular nucleus (PVN), lateral hypothalamic area (LHA), medial preoptic area (MPA), and bed nucleus of the stria terminalis (BNST), across the estrous cycle. We identified expression of estrogen receptors (ERs) in the NI using droplet digital PCR and assessed the electrophysiological responsiveness of NI neurons to estradiol in brain slices. RESULTS: Rln3 mRNA reached the lowest levels in the NI pars compacta during proestrus. Rxfp3 mRNA levels varied across the estrous cycle in a region-specific manner, with changes observed in the perifornical LHA, magnocellular PVN, dorsal BNST, and MPA, but not in the parvocellular PVN or lateral LHA. G protein-coupled estrogen receptor 1 (Gper1) mRNA was the most abundant ER transcript in the NI. Estradiol inhibited 33% of type 1 NI neurons, including RLN3-positive cells. CONCLUSION: These findings demonstrate that the RLN3/RXFP3 system is modulated by the estrous cycle, and although further studies are required to better elucidate the cellular and molecular mechanisms of estradiol signaling, current results implicate the involvement of the RLN3/RXFP3 system in food intake fluctuations observed across the estrous cycle in female rats.


Assuntos
Estradiol/metabolismo , Ciclo Estral/metabolismo , Região Hipotalâmica Lateral/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Área Pré-Óptica/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/metabolismo , Relaxina/metabolismo , Núcleos Septais/metabolismo , Animais , Feminino , RNA Mensageiro/metabolismo , Ratos
10.
Nutrients ; 12(11)2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33202557

RESUMO

The dysfunction of melanocortin signaling has been associated with obesity, given the important role in the regulation of energy homeostasis, food intake, satiety and body weight. In the hypothalamus, the melanocortin-3 receptor (MC3R) and melanocortin-4 receptor (MC4R) contribute to the stability of these processes, but MC3R and MC4R are also localized in the mesolimbic dopamine system, the region that responds to the reinforcing properties of highly palatable food (HPF) and where these two receptors seem to affect food reward and motivation. Loss of function of the MC4R, resulting from genetic mutations, leads to overeating in humans, but to date, a clear understanding of the underlying mechanisms and behaviors that promote overconsumption of caloric foods remains unknown. Moreover, the MC4R demonstrated to be a crucial modulator of the stress response, factor that is known to be strictly related to binge eating behavior. In this review, we will explore the preclinical and clinical studies, and the controversies regarding the involvement of melanocortin system in altered eating patterns, especially binge eating behavior, food reward and motivation.


Assuntos
Bulimia/genética , Ingestão de Alimentos/genética , Comportamento Alimentar , Hiperfagia/genética , Obesidade/genética , Receptor Tipo 4 de Melanocortina/genética , Índice de Massa Corporal , Ingestão de Alimentos/psicologia , Humanos , Hipotálamo/metabolismo , Motivação , Mutação , Obesidade/psicologia , Receptor Tipo 3 de Melanocortina/genética , Receptor Tipo 3 de Melanocortina/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Recompensa
11.
Neuropsychopharmacology ; 45(11): 1931-1941, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32353860

RESUMO

Binge eating disorder (BED) is the most frequent eating disorder, for which current pharmacotherapies show poor response rates and safety concerns, thus highlighting the need for novel treatment options. The lipid-derived messenger oleoylethanolamide (OEA) acts as a satiety signal inhibiting food intake through the involvement of central noradrenergic and oxytocinergic neurons. We investigated the anti-binge effects of OEA in a rat model of binge-like eating, in which, after cycles of intermittent food restrictions/refeeding and palatable food consumptions, female rats show a binge-like intake of palatable food, following a 15-min exposure to their sight and smell ("frustration stress"). Systemically administered OEA dose-dependently (2.5, 5, and 10 mg kg-1) prevented binge-like eating. This behavioral effect was associated with a decreased activation (measured by mapping the expression of c-fos, an early gene widely used as a marker of cellular activation) of brain areas responding to stress (such as the nucleus accumbens and amygdala) and to a stimulation of areas involved in the control of food intake, such as the VTA and the PVN. These effects were paralleled, also, to the modulation of monoamine transmission in key brain areas involved in both homeostatic and hedonic control of eating. In particular, a decreased dopaminergic response to stress was observed by measuring dopamine extracellular concentrations in microdialysates from the nucleus accumbens shell, whereas an increased serotonergic and noradrenergic tone was detected in tissue homogenates of selected brain areas. Finally, a decrease in corticotropin-releasing factor (CRF) mRNA levels was induced by OEA in the central amygdala, while an increase in oxytocin mRNA levels was induced in the PVN. The restoration of a normal oxytocin receptor density in the striatum paralleled the oxytocinergic stimulation produced by OEA. In conclusion, we provide evidence suggesting that OEA might represent a novel potential pharmacological target for the treatment of binge-like eating behavior.


Assuntos
Transtorno da Compulsão Alimentar , Animais , Transtorno da Compulsão Alimentar/tratamento farmacológico , Ingestão de Alimentos , Endocanabinoides , Feminino , Frustração , Ácidos Oleicos , Ratos
12.
Int J Mol Sci ; 21(6)2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32188150

RESUMO

Metabolic syndrome (MetS) is a predictor of cardiovascular diseases, commonly associated with oxidative stress and inflammation. However, the pathogenic mechanisms are not yet fully elucidated. The aim of the study is to evaluate the oxidative status and inflammation in the heart of obese Zucker rats (OZRs) and lean Zucker rats (LZRs) at different ages. Morphological and morphometric analyses were performed in the heart. To study the oxidative status, the malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), protein oxidation, and antioxidant enzymes were measured in plasma and heart. To elucidate the inflammatory markers involved, immunohistochemistry and Western blot were performed for cellular adhesion molecules and proinflammatory cytokines. OZRs were characterized by hypertension, hyperlipidemia, hyperglycemia, and insulin resistance. The obesity increased MDA and decreased the activities of superoxide dismutase (SOD) in plasma as well as in the heart, associated with cardiomyocytes hypertrophy. OxyBlot in plasma and in heart showed an increase of oxidativestate proteins in OZRs. Vascular cell adhesion molecule-1, interleukin-6, and tumor necrosis factor-α expressions in OZRs were higher than those of LZRs. However, these processes did not induce apoptosis or necrosis of cardiomyocytes. Thus, MetS induces the lipid peroxidation and decreased antioxidant defense that leads to heart tissue changes and coronary inflammation.


Assuntos
Sistema Cardiovascular/metabolismo , Síndrome Metabólica/metabolismo , Obesidade/metabolismo , Aldeídos/metabolismo , Animais , Antioxidantes/farmacologia , Sistema Cardiovascular/patologia , Sistema Cardiovascular/fisiopatologia , Citocinas/metabolismo , Modelos Animais de Doenças , Coração/fisiopatologia , Hiperglicemia/complicações , Hiperglicemia/fisiopatologia , Hiperlipidemias/complicações , Hiperlipidemias/fisiopatologia , Hipertensão/complicações , Hipertensão/fisiopatologia , Inflamação , Resistência à Insulina , Masculino , Malondialdeído/metabolismo , Síndrome Metabólica/patologia , Síndrome Metabólica/fisiopatologia , Obesidade/patologia , Obesidade/fisiopatologia , Estresse Oxidativo , Ratos , Ratos Zucker , Superóxido Dismutase/metabolismo
13.
J Neurosci ; 40(12): 2485-2497, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32051327

RESUMO

We recently developed a rat model of relapse to drug seeking after food choice-induced voluntary abstinence. Here, we used this model to study the role of the orbitofrontal cortex (OFC) and its afferent projections in relapse to fentanyl seeking. We trained male and female rats to self-administer palatable food pellets for 6 d (6 h/d) and intravenous fentanyl (2.5 µg/kg/infusion) for 12 d (6 h/d). We assessed relapse to fentanyl seeking after 13-14 voluntary abstinence days, achieved through a discrete choice procedure between fentanyl infusions and palatable food (20 trials/d). In both sexes, relapse after food choice-induced abstinence was associated with increased expression of the activity marker Fos in the OFC. Pharmacological inactivation of the OFC with muscimol plus baclofen (50 + 50 ng/side) decreased relapse to fentanyl seeking. We then determined projection-specific activation of OFC afferents during the relapse test by using Fos plus the retrograde tracer cholera toxin B (injected into the OFC). Relapse to fentanyl seeking was associated with increased Fos expression in the piriform cortex (Pir) neurons projecting to the OFC, but not in projections from the basolateral amygdala and thalamus. Pharmacological inactivation of the Pir with muscimol plus baclofen decreased relapse to fentanyl seeking after voluntary abstinence. Next, we used an anatomical disconnection procedure to determine whether projections between the Pir and OFC are critical for relapse to fentanyl seeking. Unilateral muscimol plus baclofen injections into the Pir in one hemisphere plus unilateral muscimol plus baclofen injections into the OFC in the contralateral, but not ipsilateral, hemisphere decreased relapse. Our results identify Pir-OFC projections as a new motivation-related pathway critical to relapse to opioid seeking after voluntary abstinence.SIGNIFICANCE STATEMENT There are few preclinical studies of fentanyl relapse, and these studies have used experimenter-imposed extinction or forced abstinence procedures. In humans, however, abstinence is often voluntary, with drug available in the drug environment but forgone in favor of nondrug alternative reinforcers. We recently developed a rat model of drug relapse after palatable food choice-induced voluntary abstinence. Here, we used classical pharmacology, immunohistochemistry, and retrograde tracing to demonstrate a critical role of the piriform and orbitofrontal cortices in relapse to opioid seeking after voluntary abstinence.


Assuntos
Analgésicos Opioides , Comportamento de Procura de Droga , Fentanila , Transtornos Relacionados ao Uso de Opioides/fisiopatologia , Transtornos Relacionados ao Uso de Opioides/psicologia , Córtex Piriforme/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Animais , Baclofeno/administração & dosagem , Baclofeno/farmacologia , Comportamento de Escolha , Feminino , Preferências Alimentares , Agonistas GABAérgicos/administração & dosagem , Agonistas GABAérgicos/farmacologia , Expressão Gênica/efeitos dos fármacos , Genes fos , Masculino , Microinjeções , Muscimol/administração & dosagem , Muscimol/farmacologia , Ratos , Ratos Sprague-Dawley , Recidiva , Autoadministração
14.
J Psychopharmacol ; 33(12): 1550-1561, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31161847

RESUMO

BACKGROUND: Pharmacological treatment approaches for eating disorders, such as binge eating disorder and bulimia nervosa, are currently limited. METHODS AND AIMS: Using a well-characterized animal model of binge eating, we investigated the epigenetic regulation of the A2A Adenosine Receptor (A2AAR) and dopaminergic D2 receptor (D2R) genes. RESULTS: Gene expression analysis revealed a selective increase of both receptor mRNAs in the amygdaloid complex of stressed and restricted rats, which exhibited binge-like eating, when compared to non-stressed and non-restricted rats. Consistently, pyrosequencing analysis revealed a significant reduction of the percentage of DNA methylation but only at the A2AAR promoter region in rats showing binge-like behaviour compared to the control animals. Focusing thus on A2AAR agonist (VT 7) administration (which inhibited the episode of binge systemically at 0.1 mg/kg or intra-central amygdala (CeA) injection at 900 ng/side) induced a significant increase of A2AAR mRNA levels in restricted and stressed rats when compared to the control group. In addition, we observed a significant decrease in A2AAR mRNA levels in rats treated with the A2AAR antagonist (ANR 94) at 1 mg/kg. Consistent changes in the DNA methylation status of the A2AAR promoter were found in restricted and stressed rats after administration of VT 7 or ANR 94. CONCLUSION: We confirm the role of A2AAR in binge eating behaviours, and we underline the importance of epigenetic regulation of the A2AAR gene, possibly due to a compensatory mechanism to counteract the effect of binge eating. We suggest that A2AAR activation, inducing receptor gene up-regulation, could be relevant to reduction of food consumption.


Assuntos
Transtorno da Compulsão Alimentar/genética , Bulimia/genética , Receptor A2A de Adenosina/genética , Receptores de Dopamina D2/genética , Adenina/análogos & derivados , Adenina/farmacologia , Tonsila do Cerebelo/metabolismo , Animais , Transtorno da Compulsão Alimentar/fisiopatologia , Metilação de DNA/genética , Modelos Animais de Doenças , Epigênese Genética , Feminino , Regulação da Expressão Gênica , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
15.
Addict Biol ; 23(2): 699-712, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28661034

RESUMO

We recently developed a rat model of context-induced relapse to alcohol seeking after punishment-imposed abstinence to mimic relapse after self-imposed abstinence due to adverse consequences of drug use. Here, we determined the model's generality to cocaine and have begun to explore brain mechanisms of context-induced relapse to cocaine seeking after punishment-imposed abstinence, using the activity marker Fos. In exp. 1, we trained rats to self-administer cocaine (0.75 mg/kg/infusion, 6 hours/day, 12 days) in context A. Next, we transferred them to context B where for the paired group, but not unpaired group, 50 percent of cocaine-reinforced lever presses caused aversive footshock. We then tested the rats for cocaine seeking under extinction conditions in contexts A and B. We also retested them for relapse after retraining in context A and repunishment in context B. In exp. 2, we used Fos immunoreactivity to determine relapse-associated neuronal activation in brain regions of rats exposed to context A, context B or neither context. Results showed the selective shock-induced suppression of cocaine self-administration and context-induced relapse after punishment-imposed abstinence in rats exposed to paired, but not unpaired, footshock. Additionally, context-induced relapse was associated with selective activation of dorsal and ventral medial prefrontal cortex, anterior insula, dorsal striatum, basolateral amygdala, paraventricular nucleus of the thalamus, lateral habenula, substantia nigra, ventral subiculum, and dorsal raphe, but not nucleus accumbens, central amygdala, lateral hypothalamus, ventral tegmental area and other brain regions. Together, context-induced relapse after punishment-imposed abstinence generalizes to rats with a history of cocaine self-administration and is associated with selective activation of cortical and subcortical regions.


Assuntos
Encéfalo/metabolismo , Cocaína/administração & dosagem , Inibidores da Captação de Dopamina/administração & dosagem , Comportamento de Procura de Droga , Punição , Tonsila do Cerebelo/metabolismo , Animais , Córtex Cerebral/metabolismo , Corpo Estriado/metabolismo , Núcleo Dorsal da Rafe/metabolismo , Extinção Psicológica , Habenula/metabolismo , Hipocampo/metabolismo , Masculino , Núcleos da Linha Média do Tálamo/metabolismo , Proteínas Oncogênicas v-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Recidiva , Substância Negra/metabolismo
16.
Pharmacol Res ; 122: 20-34, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28535974

RESUMO

The satiety-promoting action of oleoylethanolamide (OEA) has been associated to the indirect activation of selected brain areas, such as the nucleus of the solitary tract (NST) in the brainstem and the tuberomammillary (TMN) and paraventricular (PVN) nuclei in the hypothalamus, where noradrenergic, histaminergic and oxytocinergic neurons play a necessary role. Visceral ascending fibers were hypothesized to mediate such effects. However, our previous findings demonstrated that the hypophagic action of peripherally administered OEA does not require intact vagal afferents and is associated to a strong activation of the area postrema (AP). Therefore, we hypothesized that OEA may exert its central effects through the direct activation of this circumventricular organ. To test this hypothesis, we subjected rats to the surgical ablation of the AP (APX rats) and evaluated the effects of OEA (10mgkg-1 i.p.) on food intake, Fos expression, hypothalamic oxytocin (OXY) immunoreactivity and on the expression of dopamine beta hydroxylase (DBH) in the brainstem and hypothalamus. We found that the AP lesion completely prevented OEA's behavioral and neurochemical effects in the brainstem and the hypothalamus. Moreover OEA increased DBH expression in AP and NST neurons of SHAM rats while the effect in the NST was absent in APX rats, thus suggesting the possible involvement of noradrenergic AP neurons. These results support the hypothesis of a necessary role of the AP in mediating OEA's central effects that sustain its pro-satiety action.


Assuntos
Área Postrema/efeitos dos fármacos , Tronco Encefálico/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Endocanabinoides/farmacologia , Hipotálamo/efeitos dos fármacos , Ácidos Oleicos/farmacologia , Animais , Área Postrema/fisiologia , Tronco Encefálico/fisiologia , Dopamina beta-Hidroxilase/análise , Dopamina beta-Hidroxilase/metabolismo , Hipotálamo/fisiologia , Masculino , Ocitocina/análise , Ocitocina/metabolismo , PPAR alfa/análise , PPAR alfa/metabolismo , Proteínas Proto-Oncogênicas c-fos/análise , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Wistar
17.
Int J Eat Disord ; 50(6): 624-635, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28230907

RESUMO

Because binge eating and emotional eating vary through the menstrual cycle in human females, we investigated cyclic changes in binge-like eating in female rats and their control by estrogens. Binge-like eating was elicited by three cycles of 4 days of food restriction and 4 days of free feeding followed by a single frustrative nonreward-stress episode (15 min visual and olfactory exposure to a familiar palatable food) immediately before presentation of the palatable food. Intact rats showed binge-like eating during the diestrous and proestrous phases of the ovarian cycle, but not during the estrous (periovulatory) phase. Ovariectomized (OVX) rats not treated with estradiol (E2) displayed binge-like eating, whereas E2-treated OVX rats did not. The procedure did not increase signs of anxiety in an open-field test. OVX rats not treated with E2 that were subjected to food restriction and sacrificed immediately after frustrative nonreward had increased numbers of cells expressing phosphorylated extracellular signal-regulated kinases (ERK) in the central nucleus of the amygdala (CeA), paraventricular nucleus of hypothalamus (PVN), and dorsal and ventral bed nuclei of the stria terminalis (BNST) compared with nonrestricted or E2-treated rats. These data suggest that this female rat model is appropriate for mechanistic studies of some aspects of menstrual-cycle effects on emotional and binge eating in human females, that anxiety is not a sufficient cause of binge-like eating, and that the PVN, CeA, and BNST may contribute to information processing underlying binge-like eating.


Assuntos
Transtorno da Compulsão Alimentar/complicações , Estrogênios/metabolismo , Privação de Alimentos/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Humanos , Ratos , Ratos Sprague-Dawley , Estresse Fisiológico
18.
Eur J Neurosci ; 43(5): 653-61, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26750109

RESUMO

Amylin is a pancreatic ß-cell hormone that acts as a satiating signal to inhibit food intake by binding to amylin receptors (AMYs) and activating a specific neuronal population in the area postrema (AP). AMYs are heterodimers that include a calcitonin receptor (CTR) subunit [CTR isoform a or b (CTRa or CTRb)] and a member of the receptor activity-modifying proteins (RAMPs). Here, we used single-cell quantitative polymerase chain reaction to assess co-expression of AMY subunits in AP neurons from rats that were injected with amylin or vehicle. Because amylin interacts synergistically with the adipokine leptin to reduce body weight, we also assessed the co-expression of AMY and the leptin receptor isoform b (LepRb) in amylin-activated AP neurons. Single cells were collected from Wistar rats and from transgenic Fos-GFP rats that express green fluorescent protein (GFP) under the control of the Fos promoter. We found that the mRNAs of CTRa, RAMP1, RAMP2 and RAMP3 were all co-expressed in single AP neurons. Moreover, most of the CTRa+ cells co-expressed more than one of the RAMPs. Amylin down-regulated RAMP1 and RAMP3 but not CTR mRNAs in AMY+ neurons, suggesting a possible negative feedback mechanism of amylin at its own primary receptors. Interestingly, amylin up-regulated RAMP2 mRNA. We also found that a high percentage of single cells that co-expressed all components of a functional AMY expressed LepRb mRNA. Thus, single AP cells expressed both AMY and LepRb, which formed a population of first-order neurons that presumably can be directly activated by amylin and, at least in part, also by leptin.


Assuntos
Área Postrema/metabolismo , Neurônios/metabolismo , Receptores de Polipeptídeo Amiloide de Ilhotas Pancreáticas/metabolismo , Receptores para Leptina/metabolismo , Animais , Área Postrema/citologia , Retroalimentação Fisiológica , Feminino , Polipeptídeo Amiloide das Ilhotas Pancreáticas/farmacologia , Leptina/farmacologia , Masculino , Neurônios/efeitos dos fármacos , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores de Polipeptídeo Amiloide de Ilhotas Pancreáticas/genética , Receptores para Leptina/genética
19.
J Nutr Biochem ; 26(3): 250-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25533906

RESUMO

Extravirgin olive oil (EVOO) represents the typical lipid source of the Mediterranean diet, an eating habit pattern that has been associated with a significant reduction of cancer risk. Diet is the more studied environmental factor in epigenetics, and many evidences suggest dysregulation of epigenetic pathways in cancer. The aim of our study was to investigate the effects of EVOO and its phenolic compounds on endocannabinoid system (ECS) gene expression via epigenetic regulation in both human colon cancer cells (Caco-2) and rats exposed to short- and long-term dietary EVOO. We observed a selective and transient up-regulation of CNR1 gene - encoding for type 1 cannabinoid receptor (CB1) - that was evoked by exposure of Caco-2 cells to EVOO (100 ppm), its phenolic extracts (OPE, 50 µM) or authentic hydroxytyrosol (HT, 50 µM) for 24 h. None of the other major elements of the ECS (i.e., CB2; GPR55 and TRPV1 receptors; and NAPE-PLD, DAGL, FAAH and MAGL enzymes) was affected at any time point. The stimulatory effect of OPE and HT on CB1 expression was inversely correlated to DNA methylation at CNR1 promoter and was associated with reduced proliferation of Caco-2 cells. Interestingly, CNR1 gene was less expressed in Caco-2 cells when compared to normal colon mucosa cells, and again this effect was associated with higher level of DNA methylation at CNR1. Moreover, in agreement with the in vitro studies, we also observed a remarkable (~4-fold) and selective increase in CB1 expression in the colon of rats receiving dietary EVOO supplementation for 10 days. Consistently, CpG methylation of rat Cnr1 promoter, miR23a and miR-301a, previously shown to be involved in the pathogenesis of colorectal cancer and predicted to target CB1 mRNA, was reduced after EVOO administration down to ~50% of controls. Taken together, our findings demonstrating CB1 gene expression modulation by EVOO or its phenolic compounds via epigenetic mechanism, both in vitro and in vivo, may provide a new therapeutic avenue for treatment and/or prevention of colon cancer.


Assuntos
Colo/metabolismo , Neoplasias do Colo/metabolismo , Epigênese Genética , Óleos de Plantas/metabolismo , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/metabolismo , Regulação para Cima , Animais , Células CACO-2 , Linhagem Celular , Proliferação de Células , Colo/citologia , Colo/patologia , Neoplasias do Colo/patologia , Neoplasias do Colo/prevenção & controle , Metilação de DNA , Gorduras Insaturadas na Dieta/metabolismo , Gorduras Insaturadas na Dieta/normas , Gorduras Insaturadas na Dieta/uso terapêutico , Feminino , Frutas/química , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Proteínas de Neoplasias/agonistas , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Olea/química , Azeite de Oliva , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/metabolismo , Extratos Vegetais/metabolismo , Óleos de Plantas/química , Óleos de Plantas/normas , Regiões Promotoras Genéticas , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/química , Receptor CB1 de Canabinoide/genética
20.
J Neurosci ; 34(34): 11316-24, 2014 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-25143612

RESUMO

We developed recently a binge-eating model in which female rats with a history of intermittent food restriction show binge-like palatable food consumption after 15 min exposure to the sight of the palatable food. This "frustration stress" manipulation also activates the hypothalamic-pituitary-adrenal stress axis. Here, we determined the role of the stress neurohormone corticotropin-releasing factor (CRF) in stress-induced binge eating in our model. We also assessed the role of CRF receptors in the bed nucleus of the stria terminalis (BNST), a brain region implicated in stress responses and stress-induced drug seeking, in stress-induced binge eating. We used four groups that were first exposed or not exposed to repeated intermittent cycles of regular chow food restriction during which they were also given intermittent access to high-caloric palatable food. On the test day, we either exposed or did not expose the rats to the sight of the palatable food for 15 min (frustration stress) before assessing food consumption for 2 h. We found that systemic injections of the CRF1 receptor antagonist R121919 (2,5-dimethyl-3-(6-dimethyl-4-methylpyridin-3-yl)-7 dipropylamino pyrazolo[1,5-a]pyrimidine) (10-20 mg/kg) and BNST (25-50 ng/side) or ventricular (1000 ng) injections of the nonselective CRF receptor antagonist D-Phe-CRF(12-41) decreased frustration stress-induced binge eating in rats with a history of food restriction. Frustration stress also increased Fos (a neuronal activity marker) expression in ventral and dorsal BNST. Results demonstrate a critical role of CRF receptors in BNST in stress-induced binge eating in our rat model. CRF1 receptor antagonists may represent a novel pharmacological treatment for bingeing-related eating disorders.


Assuntos
Bulimia/etiologia , Privação de Alimentos , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Núcleos Septais/metabolismo , Estresse Psicológico/complicações , Animais , Comportamento Consumatório/efeitos dos fármacos , Comportamento Consumatório/fisiologia , Hormônio Liberador da Corticotropina/análogos & derivados , Hormônio Liberador da Corticotropina/farmacologia , Feminino , Injeções Intraventriculares , Proteínas Oncogênicas v-fos/metabolismo , Pirimidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Hormônio Liberador da Corticotropina/agonistas , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores , Núcleos Septais/efeitos dos fármacos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA