RESUMO
Papillomaviruses (PVs) are considered highly species-specific with cospeciation as the main driving force in their evolution. However, a recent increase in the available PV genome sequences has revealed inconsistencies in virus-host phylogenies, which could be explained by adaptive radiation, recombination, host-switching events and a broad PV host range. Unfortunately, with a relatively low number of animal PVs characterized, understanding these incongruities remains elusive. To improve knowledge of biology and the spread of animal PV, we collected 60 swabs of the anogenital and head and neck regions from a healthy colony of 30 Roborovski hamsters (Phodopus roborovskii) and detected PVs in 44/60 (73.3%) hamster samples. This is the first report of PV infection in Roborovski hamsters. Moreover, Phodopus sungorus papillomavirus type 1 (PsuPV1), previously characterized in Siberian hamsters (Phodopus sungorus), was the only PV detected in Roborovski hamsters. In addition, after a detailed literature search, review and summary of published evidence and construction of a tanglegram linking the cladograms of PVs and their hosts, our findings were discussed in the context of available knowledge on PVs described in at least two different host species.
Assuntos
Papillomaviridae/classificação , Papillomaviridae/genética , Infecções por Papillomavirus/virologia , Phodopus/virologia , Filogenia , Canal Anal/virologia , Animais , Animais Selvagens/virologia , Evolução Molecular , Feminino , Genitália/virologia , Especificidade de Hospedeiro , Masculino , Papillomaviridae/isolamento & purificação , Papillomaviridae/patogenicidade , Infecções por Papillomavirus/transmissãoRESUMO
Phodopus sungorus papillomavirus type 1 (PsuPV1), naturally infecting Siberian hamsters (Phodopus sungorus) and clustering in the genus Pipapillomavirus (Pi-PV), is only the second PV type isolated from the subfamily of hamsters. In silico analysis of three independent complete viral genomes obtained from cervical adenocarcinoma, oral squamous cell carcinoma and normal oral mucosa revealed that PsuPV1 encodes characteristic viral proteins (E1, E2, E4, E6, E7, L1 and L2) with conserved functional domains and a highly conserved non-coding region. The overall high prevalence (102/114; 89.5â%) of PsuPV1 infection in normal oral and anogenital mucosa suggests that asymptomatic infection with PsuPV1 is very frequent in healthy Siberian hamsters from an early age onward, and that the virus is often transmitted between both anatomical sites. Using type-specific real-time PCR and chromogenic in situ hybridization, the presence of PsuPV1 was additionally detected in several investigated tumours (cervical adenocarcinoma, cervical adenomyoma, vaginal carcinoma in situ, ovarian granulosa cell tumour, mammary ductal carcinoma, oral fibrosarcoma, hibernoma and squamous cell papilloma) and normal tissues of adult animals. In the tissue sample of the oral squamous cell carcinoma individual, punctuated PsuPV1-specific in situ hybridization spots were detected within the nuclei of infected animal cells, suggesting viral integration into the host genome and a potential etiological association of PsuPV1 with sporadic cases of this neoplasm.