RESUMO
The consumption of western diets, high in fats and sugars, is a crucial contributor to brain molecular alterations, cognitive dysfunction and neurodegenerative diseases. Therefore, a mandatory challenge is the individuation of strategies capable of preventing diet-induced impairment of brain physiology. A promising strategy might consist in the administration of probiotics that are known to influence brain function via the gut-brain axis. In this study, we explored whether Limosilactobacillus reuteri DSM 17938 (L. reuteri)-based approach can counteract diet-induced neuroinflammation, endoplasmic reticulum stress (ERS), and autophagy in hippocampus, an area involved in learning and memory, in rat fed a high fat and fructose diet. The western diet induced a microbiota reshaping, but L. reuteri neither modulated this change, nor the plasma levels of short-chain fatty acids. Interestingly, pro-inflammatory signaling pathway activation (increased NFkB phosphorylation, raised amounts of toll-like receptor-4, tumor necrosis factor-alpha, interleukin-6, GFAP, and Haptoglobin), as well as activation of ERS (increased PERK and eif2α phosphorylation, higher C/EBP-homologous protein amounts) and autophagy (increased beclin, P62-sequestosome-1, and LC3 II) was revealed in hippocampus of western diet fed rats. All these hippocampal alterations were prevented by L. reuteri administration, showing for the first time a neuroprotective role of this specific probiotic strain, mainly attributable to its ability to regulate western diet-induced metabolic endotoxemia and systemic inflammation, as decreased levels of lipopolysaccharide, plasma cytokines, and adipokines were also found. Therapeutic strategies based on the use of L. reuteri DSM17938 could be beneficial in reversing metabolic syndrome-mediated brain dysfunction and cognitive decline.
RESUMO
Bisphenol A (BPA) is an organic chemical compound widely used for manufacturing plastics. BPA exposure originates principally from the diet, but it can also originate from dermal contact. In over 90% of individuals, including pregnant women, BPA is detectable in several body fluids. The effects of this exposure on the fetus are under active investigation in several research laboratories. The aim of our work was to study the impact of prenatal exposure to BPA in the liver of rat fetuses from a sex-dependent point of view. We particularly investigated the effects of prenatal BPA exposure on hepatic lipids because of their crucial role, not only for the liver, but also for the whole-body functions. Our results demonstrate that the liver of rat fetuses, in utero exposed to a very low dose of BPA (2.5 µg/kg/day), displays significant modulations with regard to proteins involved in cholesterol and fatty acid biosynthesis and trafficking. Moreover, an impact on inflammatory process has been observed. All these effects are dependent on sex, being observable only in female rat fetuses. In conclusion, this work demonstrates that maternal exposure to BPA compromises hepatic lipid metabolism in female offspring, and it also reveals the perspective impact of BPA on human health at doses currently considered safe.
Assuntos
Compostos Benzidrílicos/toxicidade , Feto/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Fenóis/toxicidade , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Animais , Compostos Benzidrílicos/química , Receptor alfa de Estrogênio/metabolismo , Feminino , Feto/efeitos dos fármacos , Inflamação/patologia , Lipídeos/sangue , Fígado/efeitos dos fármacos , Fígado/enzimologia , Masculino , Fenóis/química , Gravidez , Ratos Sprague-DawleyRESUMO
Persistence of damage induced by unhealthy diets during youth has been little addressed. Therefore, we investigated the impact of a short-term fructose-rich diet on liver metabolic activity in adolescent rats and the putative persistence of alterations after removing fructose from the diet. Adolescent rats were fed a fructose-rich diet for three weeks and then switched to a control diet for further three weeks. Body composition and energy balance were not affected by fructose-rich diet, while increased body lipids and lipid gain were found after the rescue period. Switching to a control diet reversed the upregulation of plasma fructose, uric acid, lipocalin, and haptoglobin, while plasma triglycerides, alanine aminotransferase, lipopolysaccharide, and tumor necrosis factor alpha remained higher. Hepatic steatosis and ceramide were increased by fructose-rich diet, but reversed by returning to a control diet, while altered hepatic response to insulin persisted. Liver fatty acid synthase and stearoyl-CoA desaturase (SCD) activities were upregulated by fructose-rich diet, and SCD activity remained higher after returning to the control diet. Fructose-induced upregulation of complex II-driven mitochondrial respiration, peroxisome proliferator-activated receptor-gamma coactivator 1 alpha, and peroxisome proliferator activated receptor α also persisted after switching to control diet. In conclusion, our results show prolonged fructose-induced dysregulation of liver metabolic activity.
Assuntos
Dieta da Carga de Carboidratos/efeitos adversos , Ingestão de Alimentos/fisiologia , Frutose/administração & dosagem , Resistência à Insulina/fisiologia , Mitocôndrias/metabolismo , Alanina Transaminase/sangue , Animais , Composição Corporal , Ceramidas/metabolismo , Modelos Animais de Doenças , Metabolismo Energético , Fígado Gorduroso/etiologia , Frutose/sangue , Haptoglobinas/metabolismo , Lipídeos/sangue , Lipocalinas/sangue , Lipopolissacarídeos/sangue , Fígado/metabolismo , Ratos , Triglicerídeos/sangue , Fator de Necrose Tumoral alfa/sangue , Regulação para Cima/fisiologia , Ácido Úrico/sangueRESUMO
Fructose consumption has drastically increased during the last decades due to the extensive commercial use of high-fructose corn syrup as a sweetener for beverages, snacks and baked goods. Fructose overconsumption is known to induce obesity, dyslipidemia, insulin resistance and inflammation, and its metabolism is considered partially responsible for its role in several metabolic diseases. Indeed, the primary metabolites and by-products of gut and hepatic fructolysis may impair the functions of extrahepatic tissues and organs. However, fructose itself causes an adenosine triphosphate (ATP) depletion that triggers inflammation and oxidative stress. Many studies have dealt with the effects of this sugar on various organs, while the impact of fructose on brain function is, to date, less explored, despite the relevance of this issue. Notably, fructose transporters and fructose metabolizing enzymes are present in brain cells. In addition, it has emerged that fructose consumption, even in the short term, can adversely influence brain health by promoting neuroinflammation, brain mitochondrial dysfunction and oxidative stress, as well as insulin resistance. Fructose influence on synaptic plasticity and cognition, with a major impact on critical regions for learning and memory, was also reported. In this review, we discuss emerging data about fructose effects on brain health in rodent models, with special reference to the regulation of food intake, inflammation, mitochondrial function and oxidative stress, insulin signaling and cognitive function.
Assuntos
Encéfalo/fisiologia , Frutose/metabolismo , Roedores/fisiologia , Paladar/fisiologia , Envelhecimento , Animais , Metabolismo dos Carboidratos , Disfunção Cognitiva , Ingestão de Alimentos , Xarope de Milho Rico em Frutose , Inflamação/etiologia , Insulina/metabolismo , Resistência à Insulina , Fígado/metabolismo , Memória , Doenças Metabólicas/etiologia , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/etiologia , Obesidade/etiologia , Estresse Oxidativo , EdulcorantesRESUMO
Dietary fats and sugars were identified as risk factors for overweight and neurodegeneration, especially in middle-age, an earlier stage of the aging process. Therefore, our aim was to study the metabolic response of both white adipose tissue and brain in middle aged rats fed a typical Western diet (high in saturated fats and fructose, HFF) and verify whether a similarity exists between the two tissues. Specific cyto/adipokines (tumor necrosis factor alpha (TNF-α), adiponectin), critical obesity-inflammatory markers (haptoglobin, lipocalin), and insulin signaling or survival protein network (insulin receptor substrate 1 (IRS), Akt, Erk) were quantified in epididymal white adipose tissue (e-WAT), hippocampus, and frontal cortex. We found a significant increase of TNF-α in both e-WAT and hippocampus of HFF rats, while the expression of haptoglobin and lipocalin was differently affected in the various tissues. Interestingly, adiponectin amount was found significantly reduced in e-WAT, hippocampus, and frontal cortex of HFF rats. Insulin signaling was impaired by HFF diet in e-WAT but not in brain. The above changes were associated with the decrease in brain derived neurotrophic factor (BDNF) and synaptotagmin I and the increase in post-synaptic protein PSD-95 in HFF rats. Overall, our investigation supports for the first time similarities in the response of adipose tissue and brain to Western diet.
Assuntos
Tecido Adiposo/metabolismo , Encéfalo/metabolismo , Dieta Ocidental , Metabolismo Energético , Adipócitos/metabolismo , Animais , Biomarcadores , Citocinas/sangue , Citocinas/metabolismo , Mediadores da Inflamação/sangue , Mediadores da Inflamação/metabolismo , Insulina/metabolismo , Masculino , Modelos Biológicos , Especificidade de Órgãos , Ratos , Receptor trkB/metabolismo , Transdução de SinaisRESUMO
To assess the effect of 4 weeks of high fat-high fructose feeding on whole body composition, energy balance, specific markers of oxidative stress and inflammation, and insulin sensitivity in the liver of middle-aged rats, rats (1 year) were fed a diet rich in saturated fatty acids and fructose (HFF rats), mimicking the "Western diet", and compared with rats of the same age that were fed a low fat diet (LF rats). HFF rats exhibited a significant increase in the gain of body weight, energy, and lipids compared to LF rats. HFF rats also showed hepatic insulin resistance, together with an increase in plasma triglycerides, cholesterol, and tumor necrosis factor alpha. Hepatic lipids, triglycerides and cholesterol were higher in HFF rats, while a significant decrease in Stearoyl-CoA desaturase activity was found in this tissue. A marked increase in the protein amount of complex I, concomitant to a decrease in its contribution to mitochondrial respiration, was found in HFF rats. Lipid peroxidation and Nitro-Tyrosine content, taken as markers of oxidative stress, as well as NADPH oxidase activity, were significantly higher in HFF rats, while the antioxidant enzyme catalase decreased in these rats. Myeloperoxidase activity and lipocalin content increased, while peroxisome proliferator activated receptor gamma decreased in HFF rats. The present results provide evidence that middle-aged rats show susceptibility to a short-term "Western diet", exhibiting altered redox homeostasis, insulin resistance, and early mitochondrial alterations in the liver. Therefore, this type of dietary habits should be drastically limited to pursue a "healthy aging".
Assuntos
Dieta Hiperlipídica/efeitos adversos , Dieta Ocidental/efeitos adversos , Gorduras na Dieta/administração & dosagem , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Composição Corporal , Peso Corporal/efeitos dos fármacos , Colesterol/sangue , Dieta com Restrição de Gorduras/efeitos adversos , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos/administração & dosagem , Frutose/administração & dosagem , Resistência à Insulina , Peroxidação de Lipídeos/efeitos dos fármacos , Lipídeos/sangue , Fígado/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Estearoil-CoA Dessaturase/metabolismo , Triglicerídeos/sangue , Fator de Necrose Tumoral alfa/sangueRESUMO
Inflammation and oxidative stress play an important role in the pathogenesis of depressive disorders and nuclear erythroid related factor 2 (Nrf2), a regulator of RedOx homeostasis and inflammation, is a promising target for depression prevention/treatment. As fish oil (FO) and conjugated linoleic acid (CLA) are known Nrf2 inducers, their protective ability is comparatively evaluated in a murine model of depression (MRL/MpJ-Faslpr ). Oxidative stress, fatty acids content, and critical factors reflecting brain functioning-namely brain-derived neurotrophic factor (BDNF), synaptic markers, and cholinergic signaling-are preliminarily evaluated in the frontal cortex of 8-week (Young) and in 22-week old animals (Old), which are used as model of depression. These markers are measured in Old mice at the end of a 5-week pretreatment with FO or CLA (728 or 650 mg kg-1 , respectively). Old mice exhibit disrupted Redox homeostasis, compensatory Nrf2 hyperactivation, lower docosaheaxaenoic acid (DHA), and lower BDNF and synaptic function proteins compared to Young mice. FO and CLA treatment relieves almost all the pathophysiological hallmarks at a level comparable to Young mice. Presented data provide the first evidence for the comparable efficacy of FO or CLA supplementation in preventing depression signs in Old MRL/lpr mice, likely through their ability of improving Nrf2-mediated antioxidant defenses.
Assuntos
Encéfalo/efeitos dos fármacos , Depressão/dietoterapia , Óleos de Peixe/farmacologia , Ácidos Linoleicos Conjugados/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Envelhecimento , Animais , Antidepressivos/farmacologia , Autoimunidade/efeitos dos fármacos , Biomarcadores/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/metabolismo , Depressão/patologia , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/metabolismo , Elongases de Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Inflamação/dietoterapia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos MRL lpr , Estresse Oxidativo/efeitos dos fármacos , Estearoil-CoA Dessaturase/genética , Fator de Necrose Tumoral alfa/metabolismoRESUMO
The cholesterol metabolite 24(S)-hydroxycholesterol (24S-OHC) allows cholesterol excretion from the brain and was suggested to be critically involved in physiological as well as neurodegenerative processes. It induces on human neuronal cell cultures a dose dependent toxicity associated with increased reactive oxygen species production. Since glial cells play a key role in assisting neuronal function, here we investigated the effects of increased concentrations of 24S-OHC on a glial cell model (human glioblastoma U-87â¯MG cells). We determined the content of PGC-1α and TFAM, involved in the biogenesis of mitochondria, both mitochondrial complexes activity and protein amount, lipid and protein oxidative damage, cellular reactive oxygen species (ROS) release and both the activities and amount of the antioxidant enzymes glutathione peroxidase and catalase. Low concentration of 24S-OHC increased cellular content of PGC-1α and TFAM and the activities of mitochondrial complexes I and II, with no marked changes in their protein amount. Interestingly, 24S-OHC at lower concentrations reduced while at higher concentration increased lipid and protein oxidative damage. Conversely, the content of nitro-tyrosine increased only with the highest 24S-OHC concentration. Also, cell H2O2 release was reduced by lower and increased by higher 24S-OHC used concentrations. The cell activity of glutathione peroxidase was reduced by 24S-OHC at higher concentration while that of catalase was reduced by all the assayed concentrations. Further, a dose dependent decrease of both enzymes levels was observed. In conclusion, we demonstrated that 24S-OHC exerts different effects on U-87â¯MG cells depending on its level. At lower concentrations it stimulates cellular processes critical to maintain redox homeostasis, while at higher dose its effect on the glial cell here used resemble its action on neurons.
Assuntos
Homeostase/efeitos dos fármacos , Hidroxicolesteróis/farmacologia , Neuroglia/metabolismo , Antioxidantes/metabolismo , Catalase/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Glutationa Peroxidase/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Lipídeos/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Neuroglia/efeitos dos fármacos , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fatores de Transcrição/metabolismoRESUMO
In the central nervous system, cholesterol is critical to maintain membrane plasticity, cellular function, and synaptic integrity. In recent years, much attention was focused on the role of cholesterol in brain since a breakdown of cholesterol metabolism has been associated with different diseases. Brain-derived neurotrophic factor (BDNF) was previously reported to elicit cholesterol biosynthesis and promote the accumulation of presynaptic proteins in cholesterol-rich lipid rafts, but no data are available on its ability to modulate physiological mechanisms involved in cholesterol homeostasis. Major aim of this research was to investigate whether BDNF influences cholesterol homeostasis, focusing on the effect of the neurotrophin on Apolipoprotein E (ApoE) synthesis, cholesterol efflux from astrocytes and cholesterol incorporation into neurons. Our results show that BDNF significantly stimulates cholesterol efflux by astrocytes, as well as ATP binding cassette A1 (ABCA1) transporter and ApoE expression. Conversely, cholesterol uptake in neurons was downregulated by BDNF. This effect was associated with the increase of Liver X Receptor (LXR)-beta expression in neuron exposed to BDNF. The level of apoptosis markers, that is, cleaved caspase 3 and poly ADP ribose polymerase (PARP), was found increased in neurons treated with high cholesterol, but significantly lower when the cells were exposed to cholesterol in the presence of BDNF, thus suggesting a neuroprotective role of the neurotrophin, likely through its reducing effect of neuronal cholesterol uptake. Interestingly, cholesterol stimulates BDNF production by neurons. Overall, our findings evidenced a novel role of BDNF in the modulation of ApoE and cholesterol homeostasis in glial and neuronal cells.
Assuntos
Apolipoproteínas E/biossíntese , Astrócitos/metabolismo , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Colesterol/metabolismo , Homeostase/efeitos dos fármacos , Neurônios/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Apoptose/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Receptores X do Fígado/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Pessoa de Meia-Idade , Modelos Biológicos , Neurônios/efeitos dos fármacos , Córtex Pré-Frontal/metabolismoRESUMO
The drastic increase in the consumption of fructose encouraged the research to focus on its effects on brain physio-pathology. Although young and adults differ largely by their metabolic and physiological profiles, most of the previous studies investigated brain disturbances induced by long-term fructose feeding in adults. Therefore, we investigated whether a short-term consumption of fructose (2 weeks) produces early increase in specific markers of inflammation and oxidative stress in the hippocampus of young and adult rats. After the high-fructose diet, plasma lipopolysaccharide and tumour necrosis factor (TNF)-alpha were found significantly increased in parallel with hippocampus inflammation, evidenced by a significant rise in TNF-alpha and glial fibrillar acidic protein concentrations in both the young and adult groups. The fructose-induced inflammatory condition was associated with brain oxidative stress, as increased levels of lipid peroxidation and nitro-tyrosine were detected in the hippocampus. The degree of activation of the protein kinase B, extracellular signal-regulated kinase 1/2, and insulin receptor substrate 1 pathways found in the hippocampus after fructose feeding indicates that the detrimental effects of the fructose-rich diet might largely depend on age. Mitochondrial function in the hippocampus, together with peroxisome proliferator-activated receptor gamma coactivator 1-alpha content, was found significantly decreased in fructose-treated adult rats. In vitro studies with BV-2 microglial cells confirmed that fructose treatment induces TNF-alpha production as well as oxidative stress. In conclusion, these results suggest that unbalanced diet, rich in fructose, may be highly deleterious in young people as in adults and must be strongly discouraged for the prevention of diet-associated neuroinflammation and neurological diseases.
Assuntos
Envelhecimento/patologia , Comportamento Alimentar , Hipocampo/patologia , Inflamação/patologia , Estresse Oxidativo , Animais , Biomarcadores/sangue , Peso Corporal , Linhagem Celular , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Frutose , Inflamação/sangue , Proteínas Substratos do Receptor de Insulina/metabolismo , Masculino , Camundongos , Microglia/metabolismo , Microglia/patologia , Mitocôndrias/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/biossínteseRESUMO
Objective: The link between metabolic derangement of the gut-2013liver-visceral white adipose tissue (v-WAT) axis and gut microbiota was investigated. Methods: Rats were fed a fructose-rich diet and treated with an antibiotic mix. Inflammation was measured in portal plasma, ileum, liver, and v-WAT, while insulin signalling was analysed by measuring levels of phosphorylated kinase Akt. The function and oxidative status of hepatic mitochondria and caecal microbiota composition were also evaluated. Results: Ileal inflammation, increase in plasma transaminases, plasma peroxidised lipids, portal concentrations of tumour necrosis factor alpha, lipopolysaccharide, and non-esterified fatty acids, were induced by fructose and were reversed by antibiotic. The increased hepatic ceramide content, inflammation and decreased insulin signaling in liver and v-WAT induced by fructose was reversed by antibiotic. Antibiotic also blunted the increase in hepatic mitochondrial efficiency and oxidative damage of rats fed fructose-rich diet. Three genera, Coprococcus, Ruminococcus, and Clostridium, significantly increased, while the Clostridiaceae family significantly decreased in rats fed a fructose-rich diet, and antibiotic abolished these variations Conclusions: When gut microbiota modulation by fructose is prevented by antibiotic, inflammatory flow from the gut to the liver and v-WAT are reversed.
RESUMO
Neurodegeneration is one of the main physiological consequences of aging on brain. Metallothioneins (MTs), low molecular weight, cysteine-rich proteins that bind heavy-metal ions and oxygen-free radicals, are commonly expressed in various tissues of mammals. MTs are involved in the regulation of cell proliferation and protection, and may be engaged in aging. Expression of the ubiquitous MTs (1 and 2) and the brain specific MT3 have been studied in many neurodegenerative disorders. The research results indicate that MTs may play important, although not yet fully known, roles in brain diseases; in addition, data lack the ability to identify the MT isoforms functionally involved. The aim of this study was to analyse the level of gene expression of selected MT isoforms during brain aging. By using real-time PCR analysis, we determined the MT1/2 and MT3 expression profiles in cerebral cortex and hippocampus of adolescent (2months), adult (4 and 8months), and middle-aged (16months) rats. We show that the relative abundance of all types of MT transcripts changes during aging in both hippocampus and cortex; the first effect is a generalized decrease in the content of MTs transcripts from 2- to 8-months-old rats. After passing middle age, at 16months, we observe a huge increase in MT3 transcripts in both cortical and hippocampal areas, while the MT1/2 mRNA content increases slightly, returning to the levels measured in adolescent rats. These findings demonstrate an age-related expression of the MT3 gene. A possible link between the increasing amount of MT3 in brain aging and its different metal-binding behaviour is discussed.
Assuntos
Envelhecimento/metabolismo , Química Encefálica/genética , Metalotioneína/biossíntese , Proteínas do Tecido Nervoso/biossíntese , Animais , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/metabolismo , DNA Complementar/biossíntese , DNA Complementar/genética , Expressão Gênica/genética , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Masculino , Metalotioneína 3 , Ratos , Ratos Wistar , Transcrição GênicaRESUMO
24-Hydroxycholesterol (24OH-C) is esterified by the enzyme lecithin-cholesterol acyltransferase (LCAT) in the cerebrospinal fluid (CSF). We report here that the level of 24OH-C esters was lower in CSF of patients with amyotrophic lateral sclerosis than in healthy subjects (54% vs 68% of total 24OH-C, p=0.0005; n=8). Similarly, the level of 24OH-C esters in plasma was lower in patients than in controls (62% vs 77% of total 24OH-C; p=0.0076). The enzyme amount in CSF, as measured by densitometry of the protein band revealed by immunoblotting, was about 4-fold higher in patients than in controls (p=0.0085). As differences in the concentration of the LCAT stimulator Apolipoprotein E were not found, we hypothesized that the reduced 24OH-C esterification in CSF of patients might depend on oxidative stress. We actually found that oxidative stress reduced LCAT activity in vitro, and 24OH-C effectively stimulated the enzyme secretion from astrocytoma cells in culture. Enhanced LCAT secretion from astrocytes might represent an adaptive response to the increase of non-esterified 24OH-C percentage, aimed to avoid the accumulation of this neurotoxic compound. The low degree of 24OH-C esterification in CSF or plasma might reflect reduced activity of LCAT during neurodegeneration.
Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Encéfalo/enzimologia , Hidroxicolesteróis/metabolismo , Estresse Oxidativo , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Astrócitos/enzimologia , Estudos de Casos e Controles , Linhagem Celular Tumoral , Esterificação , Humanos , Hidroxicolesteróis/sangue , Hidroxicolesteróis/líquido cefalorraquidiano , Pessoa de Meia-IdadeRESUMO
Obesity and dietary fats are well known risk factors for the pathogenesis of neurodegenerative diseases. The analysis of specific markers, whose brain level can be affected by diet, might contribute to unveil the intersection between inflammation/obesity and neurodegeneration. Haptoglobin (Hpt) is an acute phase protein, which acts as antioxidant by binding free haemoglobin (Hb), thus neutralizing its pro-oxidative action. We previously demonstrated that Hpt plays critical functions in brain, modulating cholesterol trafficking in neuroblastoma cell lines, beta-amyloid (Aß) uptake by astrocyte, and limiting Aß toxicity on these cells. A major aim of this study was to evaluate whether a long term (12 or 24 weeks) high-fat diet (HFD) influences Hpt and Hb expression in rat hippocampus. We also assessed the development of obesity-induced inflammation by measuring hippocampal level of TNF-alpha, and the extent of protein oxidation by titrating nitro-tyrosine (N-Tyr). Hpt concentration was lower (p < 0.001) in hippocampus of HFD rats than in control animals, both in the 12 and in the 24 weeks fed groups. HFD was also associated in hippocampus with the increase of Hb level (p < 0.01), inflammation and protein oxidative modification, as evidenced by the increase in the concentration of TNF-alpha and nitro-tyrosine. In fact, TNF-alpha concentration was higher in rats receiving HFD for 12 (p < 0.01) or 24 weeks (p < 0.001) compared to those receiving the control diet. N-Tyr concentration was more elevated in hippocampus of HFD than in control rats in both 12 weeks (p = 0.04) and 24 weeks groups (p = 0.01), and a positive correlation between Hb and N-Tyr concentration was found in each group. Finally, we found that the treatment of the human glioblastoma-astrocytoma cell line U-87 MG with cholesterol and fatty acids, such as palmitic and linoleic acid, significantly impairs (p < 0.001) Hpt secretion in the extracellular compartment. We hypothesize that the HFD-dependent decrease of Hpt in hippocampus, as associated with Hb increase, might enhance the oxidative stress induced by free Hb. Altogether our data, identifying Hpt as a molecule modulated in the brain by dietary fats, may represent one of the first steps in the comprehension of the molecular mechanisms underlying the diet-related effects in the nervous system.
RESUMO
A fructose-rich diet can induce metabolic syndrome, a combination of health disorders that increases the risk of diabetes and cardiovascular diseases. Diet is also known to alter the microbial composition of the gut, although it is not clear whether such alteration contributes to the development of metabolic syndrome. The aim of this work was to assess the possible link between the gut microbiota and the development of diet-induced metabolic syndrome in a rat model of obesity. Rats were fed either a standard or high-fructose diet. Groups of fructose-fed rats were treated with either antibiotics or faecal samples from control rats by oral gavage. Body composition, plasma metabolic parameters and markers of tissue oxidative stress were measured in all groups. A 16S DNA-sequencing approach was used to evaluate the bacterial composition of the gut of animals under different diets. The fructose-rich diet induced markers of metabolic syndrome, inflammation and oxidative stress, that were all significantly reduced when the animals were treated with antibiotic or faecal samples. The number of members of two bacterial genera, Coprococcus and Ruminococcus, was increased by the fructose-rich diet and reduced by both antibiotic and faecal treatments, pointing to a correlation between their abundance and the development of the metabolic syndrome. Our data indicate that in rats fed a fructose-rich diet the development of metabolic syndrome is directly correlated with variations of the gut content of specific bacterial taxa.
Assuntos
Antibacterianos/farmacologia , Transplante de Microbiota Fecal/métodos , Frutose/efeitos adversos , Síndrome Metabólica/terapia , Obesidade/terapia , Animais , Bactérias/classificação , Bactérias/genética , Glicemia/metabolismo , Western Blotting , Ceco/efeitos dos fármacos , Ceco/metabolismo , Ceco/microbiologia , Dieta , Modelos Animais de Doenças , Ácidos Graxos não Esterificados/sangue , Frutose/administração & dosagem , Frutose/metabolismo , Glucose/metabolismo , Peróxidos Lipídicos/metabolismo , Fígado/metabolismo , Masculino , Síndrome Metabólica/etiologia , Síndrome Metabólica/metabolismo , Microbiota/efeitos dos fármacos , Microbiota/genética , Músculo Esquelético/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Carbonilação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Ribossômico 16S/genética , Ratos Sprague-DawleyRESUMO
Peptide gH625, derived from glycoprotein H of herpes simplex virus type 1, can enter cells efficiently and deliver a cargo. Nanoparticles armed with gH625 are able to cross an in vitro model of the blood-brain barrier (BBB). In the present study, in vitro experiments were performed to investigate whether gH625 can enter and accumulate in neuron and astrocyte cell lines. The ability of gH625 to cross the BBB in vivo was also evaluated. gH625 was administered in vivo to rats and its presence in the liver and in the brain was detected. Within 3.5 hours of intravenous administration, gH625 can be found beyond the BBB in proximity to cell neurites. gH625 has no toxic effects in vivo, since it does not affect the maximal oxidative capacity of the brain or the mitochondrial respiration rate. Our data suggest that gH625, with its ability to cross the BBB, represents a novel nanocarrier system for drug delivery to the central nervous system. These results open up new possibilities for direct delivery of drugs into patients in the field of theranostics and might address the treatment of several human diseases.
Assuntos
Astrócitos , Barreira Hematoencefálica/metabolismo , Portadores de Fármacos , Neurônios , Peptídeos , Proteínas do Envelope Viral , Animais , Astrócitos/química , Astrócitos/metabolismo , Química Encefálica , Linhagem Celular , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Fígado/química , Fígado/metabolismo , Nanomedicina , Neurônios/química , Neurônios/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Ratos , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismoRESUMO
Accumulation of beta-amyloid (Aß) in the extracellular space, which is one of the hallmarks of Alzheimer's disease (AD), depends on the balance between its synthesis and clearance. The physiological role of extracellular chaperones, capable of affecting early events in the amyloid cascade, is increasingly being investigated by many research groups. Among these proteins, we focused on haptoglobin, which we recently found to form a complex with beta-amyloid in brain tissues or cerebrospinal fluids from patients with AD. We also previously reported that haptoglobin increases with age in rat hippocampus. Major aim of this study was to evaluate whether haptoglobin influences Aß interaction with astrocytes and its internalization into these cells. Haptoglobin effect on Aß-induced cell death was also explored. We report here that haptoglobin impairs Aß uptake by human glioblastoma-astrocytoma cell line U-87 MG and limits the toxicity of this peptide on these cells. Of note, our data also show that Aß can stimulate haptoglobin release by astrocyte cell lines. The study of the risk of developing AD should be focused not only on the analysis of Aß but also on the level of critical ligands, such as haptoglobin, able to influence peptide aggregation or clearance.
Assuntos
Peptídeos beta-Amiloides/toxicidade , Astrócitos/efeitos dos fármacos , Haptoglobinas/farmacologia , Astrócitos/metabolismo , Linhagem Celular Tumoral , HumanosRESUMO
Alteration in cholesterol metabolism has been implicated in the pathogenesis of several neurodegenerative disorders. Apolipoprotein E (ApoE) is the major component of brain lipoproteins supporting cholesterol transport. We previously reported that the acute-phase protein Haptoglobin (Hpt) binds ApoE, and influences its function in blood cholesterol homeostasis. Major aim of this study was to investigate whether Hpt influences the mechanisms by which cholesterol is shuttled from astrocytes to neurons. In detail it was studied Hpt effect on ApoE-dependent cholesterol efflux from astrocytes and ApoE-mediated cholesterol incorporation in neurons. We report here that Hpt impairs ApoE-mediated cholesterol uptake in human neuroblastoma cell line SH-SY5Y, and limits the toxicity of a massive concentration of cholesterol for these cells, while it does not affect cholesterol efflux from the human glioblastoma-astrocytoma cell line U-87 MG. As aging is the most important non-genetic risk factor for various neurodegenerative disorders, and our results suggest that Hpt modulates ApoE functions, we evaluated the Hpt and ApoE expression profiles in cerebral cortex and hippocampus of adolescent (2 months), adult (5 and 8 months), and middle-aged (16 months) rats. Hpt mRNA level was higher in hippocampus of 8 and 16 month-old than in 2-month old rats (p < 0.05), and Hpt concentration increased with the age from adolescence to middle-age (p < 0.001). ApoE concentration, in hippocampus, was higher (p < 0.001) in 5 month-old rats compared to 2 month but did not further change with aging. No age-related changes of Hpt (protein and mRNA) were found in the cortex. Our results suggest that aging is associated with changes, particularly in the hippocampus, in the Hpt/ApoE ratio. Age-related changes in the concentration of Hpt were also found in human cerebrospinal fluids. The age-related changes might affect neuronal function and survival in brain, and have important implications in brain pathophysiology.
RESUMO
Cholesterol is mostly removed from the CNS by its conversion to cerebrosterol (24(S)-hydroxycholesterol, 24(S)OH-C), which is transported to the circulation for bile formation in liver. A neurotoxic role of this oxysterol was previously demonstrated in cell culture. Here, we provide evidence that the enzyme lecithin-cholesterol acyltransferase, long known to esterify cholesterol, also produces monoesters of 24(S)OH-C. Proteoliposomes containing apolipoprotein A-I or apolipoprotein E were used to stimulate the enzyme activity and entrap the formed esters. Proteoliposomes with apolipoprotein A-I were found to be more active than those with apolipoprotein E in stimulating the production of oxysteryl esters. Cholesterol and 24(S)OH-C were found to compete for enzyme activity. High levels of haptoglobin, as those circulating during the acute inflammatory phase, inhibited 24(S)OH-C esterification. When highly neurotoxic 24(S)OH-C was treated with enzyme and proteoliposomes before incubation with differentiated SH-SY5Y cells, the neuron survival improved. The esters of 24(S)OH-C, embedded into proteoliposomes by the enzyme and isolated from unesterified 24(S)OH-C by gel filtration chromatography, did not enter the neurons in culture. These results suggest that the enzyme, in the presence of the apolipoproteins, converts 24(S)OH-C into esters restricted to the extracellular environment, thus preventing or limiting oxysterol-induced neurotoxic injuries to neurons in culture. 24-hydroxycholesterol (24(S)OH-C) is neurotoxic. The enzyme lecithin-cholesterol acyltransferase (LCAT) synthesizes monoesters of 24(S)OH-C in reaction mixtures with proteoliposomes containing phospholipids and apolipoprotein A-I or apolipoprotein E. The esters, also produced by incubation of cerebrospinal fluid only with tritiated 24(S)OH-C, are embedded into lipoproteins that do not enter neurons in culture. The enzyme activity limits the toxicity of 24-hydroxycholesterol in neuron culture.
Assuntos
Hidroxicolesteróis/antagonistas & inibidores , Hidroxicolesteróis/metabolismo , Fosfatidilcolina-Esterol O-Aciltransferase/fisiologia , Linhagem Celular Tumoral , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Esterificação/efeitos dos fármacos , Esterificação/fisiologia , Humanos , Hidroxicolesteróis/toxicidade , Masculino , Pessoa de Meia-Idade , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Neurônios/metabolismoRESUMO
In the present study, the effect of long-term fructose feeding on skeletal muscle mitochondrial energetics was investigated. Measurements in isolated tissue were coupled with the determination of whole-body energy expenditure and insulin sensitivity. A significant increase in plasma NEFA, as well as in skeletal muscle TAG and ceramide, was found in fructose-fed rats compared with the controls, together with a significantly higher plasma insulin response to a glucose load, while no significant variation in plasma glucose levels was found. Significantly lower RMR values were found in fructose-fed rats starting from week 4 of the dietary treatment. Skeletal muscle mitochondrial mass and degree of coupling were found to be significantly higher in fructose-fed rats compared with the controls. Significantly higher lipid peroxidation was found in fructose-fed rats, together with a significant decrease in superoxide dismutase activity. Phosphorylated Akt levels normalised to plasma insulin levels were significantly lower in fructose-fed rats compared with the controls. In conclusion, a fructose-rich diet has a deep impact on a metabolically relevant tissue such as skeletal muscle. In this tissue, the consequences of high fructose feeding are altered glucose tolerance, elevated mitochondrial biogenesis and increased mitochondrial coupling. This latter modification could have a detrimental metabolic effect by causing oxidative stress and energy sparing that contribute to the high metabolic efficiency of fructose-fed rats.