Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Public Health ; 12: 1344865, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774048

RESUMO

Respiratory system cancer, encompassing lung, trachea and bronchus cancer, constitute a substantial and evolving public health challenge. Since pollution plays a prominent cause in the development of this disease, identifying which substances are most harmful is fundamental for implementing policies aimed at reducing exposure to these substances. We propose an approach based on explainable artificial intelligence (XAI) based on remote sensing data to identify the factors that most influence the prediction of the standard mortality ratio (SMR) for respiratory system cancer in the Italian provinces using environment and socio-economic data. First of all, we identified 10 clusters of provinces through the study of the SMR variogram. Then, a Random Forest regressor is used for learning a compact representation of data. Finally, we used XAI to identify which features were most important in predicting SMR values. Our machine learning analysis shows that NO, income and O3 are the first three relevant features for the mortality of this type of cancer, and provides a guideline on intervention priorities in reducing risk factors.


Assuntos
Poluição do Ar , Inteligência Artificial , Neoplasias do Sistema Respiratório , Humanos , Itália/epidemiologia , Poluição do Ar/efeitos adversos , Neoplasias do Sistema Respiratório/mortalidade , Fatores de Risco , Aprendizado de Máquina , Exposição Ambiental/efeitos adversos
2.
J Pers Med ; 14(4)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38673057

RESUMO

Respiratory malignancies, encompassing cancers affecting the lungs, the trachea, and the bronchi, pose a significant and dynamic public health challenge. Given that air pollution stands as a significant contributor to the onset of these ailments, discerning the most detrimental agents becomes imperative for crafting policies aimed at mitigating exposure. This study advocates for the utilization of explainable artificial intelligence (XAI) methodologies, leveraging remote sensing data, to ascertain the primary influencers on the prediction of standard mortality rates (SMRs) attributable to respiratory cancer across Italian provinces, utilizing both environmental and socioeconomic data. By scrutinizing thirteen distinct machine learning algorithms, we endeavor to pinpoint the most accurate model for categorizing Italian provinces as either above or below the national average SMR value for respiratory cancer. Furthermore, employing XAI techniques, we delineate the salient factors crucial in predicting the two classes of SMR. Through our machine learning scrutiny, we illuminate the environmental and socioeconomic factors pertinent to mortality in this disease category, thereby offering a roadmap for prioritizing interventions aimed at mitigating risk factors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA