Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
bioRxiv ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38766176

RESUMO

Recombinant adeno-associated viral vectors (rAAV) hold an intrinsic ability to stimulate homologous recombination (AAV-HR) and are the most used in clinical settings for in vivo gene therapy. However, rAAVs also integrate throughout the genome. Here, we describe DNA-RNA immunoprecipitation sequencing (DRIP-seq) in murine HEPA1-6 hepatoma cells and whole murine liver to establish the similarities and differences in genomic R-loop formation in a transformed cell line and intact tissue. We show enhanced AAV-HR in mice upon genetic and pharmacological upregulation of R-loops. Selecting the highly expressed Albumin gene as a model locus for genome editing in both in vitro and in vivo experiments showed that the R-loop prone, 3' end of Albumin was efficiently edited by AAV-HR, whereas the upstream R-loop-deficient region did not result in detectable vector integration. In addition, we found a positive correlation between previously reported off-target rAAV integration sites and R-loop enriched genomic regions. Thus, we conclude that high levels of R-loops, present in highly transcribed genes, promote rAAV vector genome integration. These findings may shed light on potential mechanisms for improving the safety and efficacy of genome editing by modulating R-loops and may enhance our ability to predict regions most susceptible to off-target insertional mutagenesis by rAAV vectors.

2.
bioRxiv ; 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37961428

RESUMO

G-quadruplexes (G4s) form throughout the genome and influence important cellular processes, but their deregulation can challenge DNA replication fork progression and threaten genome stability. Here, we demonstrate an unexpected, dual role for the dsDNA translocase HLTF in G4 metabolism. First, we find that HLTF is enriched at G4s in the human genome and suppresses G4 accumulation throughout the cell cycle using its ATPase activity. This function of HLTF affects telomere maintenance by restricting alternative lengthening of telomeres, a process stimulated by G4s. We also show that HLTF and MSH2, a mismatch repair factor that binds G4s, act in independent pathways to suppress G4s and to promote resistance to G4 stabilization. In a second, distinct role, HLTF restrains DNA synthesis upon G4 stabilization by suppressing PrimPol-dependent repriming. Together, the dual functions of HLTF in the G4 response prevent DNA damage and potentially mutagenic replication to safeguard genome stability.

3.
Mol Cell ; 83(20): 3582-3587, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37863025

RESUMO

In recent years, increasing evidence has highlighted the profound connection between DNA damage repair and the activation of immune responses. We spoke with researchers about their mechanistic interplays and the implications for cancer and other diseases.


Assuntos
Dano ao DNA , Reparo do DNA , Transdução de Sinais , Imunidade
4.
Nature ; 613(7942): 187-194, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36544021

RESUMO

R-loops are RNA-DNA-hybrid-containing nucleic acids with important cellular roles. Deregulation of R-loop dynamics can lead to DNA damage and genome instability1, which has been linked to the action of endonucleases such as XPG2-4. However, the mechanisms and cellular consequences of such processing have remained unclear. Here we identify a new population of RNA-DNA hybrids in the cytoplasm that are R-loop-processing products. When nuclear R-loops were perturbed by depleting the RNA-DNA helicase senataxin (SETX) or the breast cancer gene BRCA1 (refs. 5-7), we observed XPG- and XPF-dependent cytoplasmic hybrid formation. We identify their source as a subset of stable, overlapping nuclear hybrids with a specific nucleotide signature. Cytoplasmic hybrids bind to the pattern recognition receptors cGAS and TLR3 (ref. 8), activating IRF3 and inducing apoptosis. Excised hybrids and an R-loop-induced innate immune response were also observed in SETX-mutated cells from patients with ataxia oculomotor apraxia type 2 (ref. 9) and in BRCA1-mutated cancer cells10. These findings establish RNA-DNA hybrids as immunogenic species that aberrantly accumulate in the cytoplasm after R-loop processing, linking R-loop accumulation to cell death through the innate immune response. Aberrant R-loop processing and subsequent innate immune activation may contribute to many diseases, such as neurodegeneration and cancer.


Assuntos
Citoplasma , DNA , Reconhecimento da Imunidade Inata , Ácidos Nucleicos Heteroduplexes , Estruturas R-Loop , RNA , Humanos , Apoptose , Citoplasma/imunologia , Citoplasma/metabolismo , DNA/química , DNA/imunologia , DNA Helicases/genética , DNA Helicases/metabolismo , Genes BRCA1 , Enzimas Multifuncionais/genética , Enzimas Multifuncionais/metabolismo , Mutação , Neoplasias , Ácidos Nucleicos Heteroduplexes/química , Ácidos Nucleicos Heteroduplexes/imunologia , Estruturas R-Loop/imunologia , RNA/química , RNA/imunologia , RNA Helicases/genética , RNA Helicases/metabolismo , Ataxias Espinocerebelares/genética
5.
J Cell Biol ; 220(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34232287

RESUMO

R-loops are three-stranded nucleic acid structures with both physiological and pathological roles in cells. R-loop imaging generally relies on detection of the RNA-DNA hybrid component of these structures using the S9.6 antibody. We show that the use of this antibody for imaging can be problematic because it readily binds to double-stranded RNA (dsRNA) in vitro and in vivo, giving rise to nonspecific signal. In contrast, purified, catalytically inactive human RNase H1 tagged with GFP (GFP-dRNH1) is a more specific reagent for imaging RNA-DNA hybrids. GFP-dRNH1 binds strongly to RNA-DNA hybrids but not to dsRNA oligonucleotides in fixed human cells and is not susceptible to binding endogenous RNA. Furthermore, we demonstrate that purified GFP-dRNH1 can be applied to fixed cells to detect hybrids after their induction, thereby bypassing the need for cell line engineering. GFP-dRNH1 therefore promises to be a versatile tool for imaging and quantifying RNA-DNA hybrids under a wide range of conditions.


Assuntos
DNA/metabolismo , Sequências Repetidas Invertidas , RNA de Cadeia Dupla/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Ribonuclease H/metabolismo , Coloração e Rotulagem/métodos , Anticorpos/química , Anticorpos/metabolismo , Proteína BRCA1/antagonistas & inibidores , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Clonagem Molecular , DNA/química , DNA/ultraestrutura , DNA Helicases/antagonistas & inibidores , DNA Helicases/genética , DNA Helicases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Expressão Gênica , Genes Reporter , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Compostos Heterocíclicos de 4 ou mais Anéis/química , Compostos Heterocíclicos de 4 ou mais Anéis/metabolismo , Humanos , Enzimas Multifuncionais/antagonistas & inibidores , Enzimas Multifuncionais/genética , Enzimas Multifuncionais/metabolismo , Hibridização de Ácido Nucleico , Imagem Óptica/métodos , Ligação Proteica , RNA Helicases/antagonistas & inibidores , RNA Helicases/genética , RNA Helicases/metabolismo , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/ultraestrutura , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes de Fusão/genética , Ribonuclease H/genética
6.
J Clin Invest ; 131(11)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34060485

RESUMO

Hypoxia, a hallmark feature of the tumor microenvironment, causes resistance to conventional chemotherapy, but was recently reported to synergize with poly(ADP-ribose) polymerase inhibitors (PARPis) in homologous recombination-proficient (HR-proficient) cells through suppression of HR. While this synergistic killing occurs under severe hypoxia (<0.5% oxygen), our study shows that moderate hypoxia (2% oxygen) instead promotes PARPi resistance in both HR-proficient and -deficient cancer cells. Mechanistically, we identify reduced ROS-induced DNA damage as the cause for the observed resistance. To determine the contribution of hypoxia to PARPi resistance in tumors, we used the hypoxic cytotoxin tirapazamine to selectively kill hypoxic tumor cells. We found that the selective elimination of hypoxic tumor cells led to a substantial antitumor response when used with PARPi compared with that in tumors treated with PARPi alone, without enhancing normal tissue toxicity. Since human breast cancers with BRAC1/2 mutations have an increased hypoxia signature and hypoxia reduces the efficacy of PARPi, then eliminating hypoxic tumor cells should enhance the efficacy of PARPi therapy.


Assuntos
Dano ao DNA , Recombinação Homóloga , Neoplasias Experimentais , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/genética , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Mol Cell ; 78(6): 1237-1251.e7, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32442397

RESUMO

DNA replication stress can stall replication forks, leading to genome instability. DNA damage tolerance pathways assist fork progression, promoting replication fork reversal, translesion DNA synthesis (TLS), and repriming. In the absence of the fork remodeler HLTF, forks fail to slow following replication stress, but underlying mechanisms and cellular consequences remain elusive. Here, we demonstrate that HLTF-deficient cells fail to undergo fork reversal in vivo and rely on the primase-polymerase PRIMPOL for repriming, unrestrained replication, and S phase progression upon limiting nucleotide levels. By contrast, in an HLTF-HIRAN mutant, unrestrained replication relies on the TLS protein REV1. Importantly, HLTF-deficient cells also exhibit reduced double-strand break (DSB) formation and increased survival upon replication stress. Our findings suggest that HLTF promotes fork remodeling, preventing other mechanisms of replication stress tolerance in cancer cells. This remarkable plasticity of the replication fork may determine the outcome of replication stress in terms of genome integrity, tumorigenesis, and response to chemotherapy.


Assuntos
Replicação do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , DNA/biossíntese , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , DNA/genética , Dano ao DNA/genética , DNA Primase/metabolismo , DNA Primase/fisiologia , Reparo do DNA/genética , Replicação do DNA/genética , Proteínas de Ligação a DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/fisiologia , Células HEK293 , Humanos , Células K562 , Enzimas Multifuncionais/metabolismo , Enzimas Multifuncionais/fisiologia , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/fisiologia , Fatores de Transcrição/genética
8.
Mol Cell ; 73(3): 398-411, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30735654

RESUMO

During transcription, the nascent RNA strand can base pair with its template DNA, displacing the non-template strand as ssDNA and forming a structure called an R-loop. R-loops are common across many domains of life and cause DNA damage in certain contexts. In this review, we summarize recent results implicating R-loops as important regulators of cellular processes such as transcription termination, gene regulation, and DNA repair. We also highlight recent work suggesting that R-loops can be problematic to cells as blocks to efficient transcription and replication that trigger the DNA damage response. Finally, we discuss how R-loops may contribute to cancer, neurodegeneration, and inflammatory diseases and compare the available next-generation sequencing-based approaches to map R-loops genome wide.


Assuntos
Núcleo Celular/fisiologia , DNA/genética , Genoma , Instabilidade Genômica , Ácidos Nucleicos Heteroduplexes/genética , RNA/genética , Animais , DNA/química , DNA/metabolismo , Dano ao DNA , Reparo do DNA , Regulação da Expressão Gênica , Humanos , Conformação de Ácido Nucleico , Ácidos Nucleicos Heteroduplexes/química , Ácidos Nucleicos Heteroduplexes/metabolismo , RNA/química , RNA/metabolismo , Relação Estrutura-Atividade , Transcrição Gênica
9.
Cell Syst ; 7(1): 17-27.e3, 2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-29909278

RESUMO

Faithful DNA replication is challenged by stalling of replication forks during S phase. Replication stress is further increased in cancer cells or in response to genotoxic insults. Using live single-cell image analysis, we found that CDK2 activity fluctuates throughout an unperturbed S phase. We show that CDK2 fluctuations result from transient ATR signals triggered by stochastic replication stress events. In turn, fluctuating endogenous CDK2 activity causes corresponding decreases and increases in DNA synthesis rates, linking changes in stochastic replication stress to fluctuating global DNA replication rates throughout S phase. Moreover, cells that re-enter the cell cycle after mitogen stimulation have increased CDK2 fluctuations and prolonged S phase resulting from increased replication stress-induced CDK2 suppression. Thus, our study reveals a dynamic control principle for DNA replication whereby CDK2 activity is suppressed and fluctuates throughout S phase to continually adjust global DNA synthesis rates in response to recurring stochastic replication stress events.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , DNA/biossíntese , Proteínas Mutadas de Ataxia Telangiectasia/genética , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Divisão Celular , Linhagem Celular , Quinase 2 Dependente de Ciclina/fisiologia , Quinases Ciclina-Dependentes/genética , Dano ao DNA , Replicação do DNA , Proteínas de Ligação a DNA/genética , Humanos , Células MCF-7 , Fase S/fisiologia , Análise de Célula Única/métodos
10.
Cell ; 170(4): 774-786.e19, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28802045

RESUMO

Conflicts between transcription and replication are a potent source of DNA damage. Co-transcriptional R-loops could aggravate such conflicts by creating an additional barrier to replication fork progression. Here, we use a defined episomal system to investigate how conflict orientation and R-loop formation influence genome stability in human cells. R-loops, but not normal transcription complexes, induce DNA breaks and orientation-specific DNA damage responses during conflicts with replication forks. Unexpectedly, the replisome acts as an orientation-dependent regulator of R-loop levels, reducing R-loops in the co-directional (CD) orientation but promoting their formation in the head-on (HO) orientation. Replication stress and deregulated origin firing increase the number of HO collisions leading to genome-destabilizing R-loops. Our findings connect DNA replication to R-loop homeostasis and suggest a mechanistic basis for genome instability resulting from deregulated DNA replication, observed in cancer and other disease states.


Assuntos
Replicação do DNA , Transcrição Gênica , Dano ao DNA , Período de Replicação do DNA , Instabilidade Genômica , Células HEK293 , Humanos , Plasmídeos
11.
Nat Methods ; 13(12): 1036-1042, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27798611

RESUMO

Engineering and study of protein function by directed evolution has been limited by the technical requirement to use global mutagenesis or introduce DNA libraries. Here, we develop CRISPR-X, a strategy to repurpose the somatic hypermutation machinery for protein engineering in situ. Using catalytically inactive dCas9 to recruit variants of cytidine deaminase (AID) with MS2-modified sgRNAs, we can specifically mutagenize endogenous targets with limited off-target damage. This generates diverse libraries of localized point mutations and can target multiple genomic locations simultaneously. We mutagenize GFP and select for spectrum-shifted variants, including EGFP. Additionally, we mutate the target of the cancer therapeutic bortezomib, PSMB5, and identify known and novel mutations that confer bortezomib resistance. Finally, using a hyperactive AID variant, we mutagenize loci both upstream and downstream of transcriptional start sites. These experiments illustrate a powerful approach to create complex libraries of genetic variants in native context, which is broadly applicable to investigate and improve protein function.


Assuntos
Proteínas Associadas a CRISPR/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Evolução Molecular Direcionada/métodos , Mutação Puntual , Engenharia de Proteínas/métodos , RNA Guia de Cinetoplastídeos/genética , Bortezomib/farmacologia , Citidina Desaminase/genética , Resistência a Medicamentos/genética , Proteínas de Fluorescência Verde/genética , Humanos , Células K562 , Levivirus/genética , Complexo de Endopeptidases do Proteassoma/genética
12.
Elife ; 52016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27552054

RESUMO

The hormone estrogen (E2) binds the estrogen receptor to promote transcription of E2-responsive genes in the breast and other tissues. E2 also has links to genomic instability, and elevated E2 levels are tied to breast cancer. Here, we show that E2 stimulation causes a rapid, global increase in the formation of R-loops, co-transcriptional RNA-DNA products, which in some instances have been linked to DNA damage. We show that E2-dependent R-loop formation and breast cancer rearrangements are highly enriched at E2-responsive genomic loci and that E2 induces DNA replication-dependent double-strand breaks (DSBs). Strikingly, many DSBs that accumulate in response to E2 are R-loop dependent. Thus, R-loops resulting from the E2 transcriptional response are a significant source of DNA damage. This work reveals a novel mechanism by which E2 stimulation leads to genomic instability and highlights how transcriptional programs play an important role in shaping the genomic landscape of DNA damage susceptibility.


Assuntos
Dano ao DNA , Estrogênios/toxicidade , Mutagênicos/metabolismo , Transcrição Gênica , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Humanos , Células MCF-7 , RNA Mensageiro/metabolismo
13.
J Clin Invest ; 125(9): 3657-66, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26301811

RESUMO

Juvenile ciliopathy syndromes that are associated with renal cysts and premature renal failure are commonly the result of mutations in the gene encoding centrosomal protein CEP290. In addition to centrosomes and the transition zone at the base of the primary cilium, CEP290 also localizes to the nucleus; however, the nuclear function of CEP290 is unknown. Here, we demonstrate that reduction of cellular CEP290 in primary human and mouse kidney cells as well as in zebrafish embryos leads to enhanced DNA damage signaling and accumulation of DNA breaks ex vivo and in vivo. Compared with those from WT mice, primary kidney cells from Cep290-deficient mice exhibited supernumerary centrioles, decreased replication fork velocity, fork asymmetry, and increased levels of cyclin-dependent kinases (CDKs). Treatment of Cep290-deficient cells with CDK inhibitors rescued DNA damage and centriole number. Moreover, the loss of primary cilia that results from CEP290 dysfunction was rescued in 3D cell culture spheroids of primary murine kidney cells after exposure to CDK inhibitors. Together, our results provide a link between CEP290 and DNA replication stress and suggest CDK inhibition as a potential treatment strategy for a wide range of ciliopathy syndromes.


Assuntos
Antígenos de Neoplasias/metabolismo , Cerebelo/anormalidades , Dano ao DNA , Rim/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Retina/anormalidades , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/patologia , Animais , Antígenos de Neoplasias/genética , Proteínas de Ciclo Celular , Linhagem Celular , Centríolos/genética , Centríolos/metabolismo , Centríolos/patologia , Cerebelo/metabolismo , Cerebelo/patologia , Proteínas do Citoesqueleto , Replicação do DNA , Anormalidades do Olho/genética , Anormalidades do Olho/metabolismo , Anormalidades do Olho/patologia , Humanos , Rim/patologia , Doenças Renais Císticas/genética , Doenças Renais Císticas/metabolismo , Doenças Renais Císticas/patologia , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Retina/metabolismo , Retina/patologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
14.
Mol Cell ; 58(6): 1090-100, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-26051180

RESUMO

Stalled replication forks are a critical problem for the cell because they can lead to complex genome rearrangements that underlie cell death and disease. Processes such as DNA damage tolerance and replication fork reversal protect stalled forks from these events. A central mediator of these DNA damage responses in humans is the Rad5-related DNA translocase, HLTF. Here, we present biochemical and structural evidence that the HIRAN domain, an ancient and conserved domain found in HLTF and other DNA processing proteins, is a modified oligonucleotide/oligosaccharide (OB) fold that binds to 3' ssDNA ends. We demonstrate that the HIRAN domain promotes HLTF-dependent fork reversal in vitro through its interaction with 3' ssDNA ends found at forks. Finally, we show that HLTF restrains replication fork progression in cells in a HIRAN-dependent manner. These findings establish a mechanism of HLTF-mediated fork reversal and provide insight into the requirement for distinct fork remodeling activities in the cell.


Assuntos
Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação/genética , Western Blotting , Linhagem Celular Tumoral , Cristalografia por Raios X , DNA/química , DNA/genética , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Humanos , Espectroscopia de Ressonância Magnética , Modelos Genéticos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , Ligação Proteica , Estrutura Terciária de Proteína , Interferência de RNA , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Fatores de Transcrição/química , Fatores de Transcrição/genética
15.
Trends Cell Biol ; 25(9): 514-22, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26045257

RESUMO

R-loops, nucleic acid structures consisting of an RNA-DNA hybrid and displaced single-stranded (ss) DNA, are ubiquitous in organisms from bacteria to mammals. First described in bacteria where they initiate DNA replication, it now appears that R-loops regulate diverse cellular processes such as gene expression, immunoglobulin (Ig) class switching, and DNA repair. Changes in R-loop regulation induce DNA damage and genome instability, and recently it was shown that R-loops are associated with neurodegenerative disorders. We discuss recent developments in the field; in particular, the regulation and effects of R-loops in cells, their effect on genomic and epigenomic stability, and their potential contribution to the origin of diseases including cancer and neurodegenerative disorders.


Assuntos
DNA de Cadeia Simples/fisiologia , Instabilidade Genômica , Animais , Cromatina/fisiologia , Cromatina/ultraestrutura , Dano ao DNA , Reparo do DNA , Epigênese Genética , Humanos
16.
Mol Cell ; 51(4): 423-39, 2013 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-23973373

RESUMO

Renal ciliopathies are a leading cause of kidney failure, but their exact etiology is poorly understood. NEK8/NPHP9 is a ciliary kinase associated with two renal ciliopathies in humans and mice, nephronophthisis (NPHP) and polycystic kidney disease. Here, we identify NEK8 as a key effector of the ATR-mediated replication stress response. Cells lacking NEK8 form spontaneous DNA double-strand breaks (DSBs) that further accumulate when replication forks stall, and they exhibit reduced fork rates, unscheduled origin firing, and increased replication fork collapse. NEK8 suppresses DSB formation by limiting cyclin A-associated CDK activity. Strikingly, a mutation in NEK8 that is associated with renal ciliopathies affects its genome maintenance functions. Moreover, kidneys of NEK8 mutant mice accumulate DNA damage, and loss of NEK8 or replication stress similarly disrupts renal cell architecture in a 3D-culture system. Thus, NEK8 is a critical component of the DNA damage response that links replication stress with cystic kidney disorders.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cílios/patologia , Quinases Ciclina-Dependentes/metabolismo , Replicação do DNA/genética , Doenças Renais Policísticas/patologia , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fase S/fisiologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Técnicas de Cultura de Células , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/genética , Cílios/metabolismo , Quinases Ciclina-Dependentes/genética , Dano ao DNA/genética , Instabilidade Genômica , Humanos , Camundongos , Mutação/genética , Quinases Relacionadas a NIMA , Fosforilação , Doenças Renais Policísticas/metabolismo , Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Estresse Fisiológico
17.
Genes Dev ; 27(14): 1610-23, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23873943

RESUMO

The DNA damage response kinase ataxia telangiectasia and Rad3-related (ATR) coordinates much of the cellular response to replication stress. The exact mechanisms by which ATR regulates DNA synthesis in conditions of replication stress are largely unknown, but this activity is critical for the viability and proliferation of cancer cells, making ATR a potential therapeutic target. Here we use selective ATR inhibitors to demonstrate that acute inhibition of ATR kinase activity yields rapid cell lethality, disrupts the timing of replication initiation, slows replication elongation, and induces fork collapse. We define the mechanism of this fork collapse, which includes SLX4-dependent cleavage yielding double-strand breaks and CtIP-dependent resection generating excess single-stranded template and nascent DNA strands. Our data suggest that the DNA substrates of these nucleases are generated at least in part by the SMARCAL1 DNA translocase. Properly regulated SMARCAL1 promotes stalled fork repair and restart; however, unregulated SMARCAL1 contributes to fork collapse when ATR is inactivated in both mammalian and Xenopus systems. ATR phosphorylates SMARCAL1 on S652, thereby limiting its fork regression activities and preventing aberrant fork processing. Thus, phosphorylation of SMARCAL1 is one mechanism by which ATR prevents fork collapse, promotes the completion of DNA replication, and maintains genome integrity.


Assuntos
Proteínas de Ciclo Celular/metabolismo , DNA Helicases/metabolismo , Replicação do DNA/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , DNA Helicases/genética , Replicação do DNA/efeitos dos fármacos , DNA de Cadeia Simples/genética , Ativação Enzimática , Humanos , Fosforilação/efeitos dos fármacos , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Xenopus
18.
Mol Cell ; 50(1): 116-22, 2013 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-23582259

RESUMO

The MRN (MRE11-RAD50-NBS1) complex has been implicated in many aspects of the DNA damage response. It has key roles in sensing and processing DNA double-strand breaks, as well as in activation of ATM (ataxia telangiectasia mutated). We reveal a function for MRN in ATR (ATM- and RAD3-related) activation by using defined ATR-activating DNA structures in Xenopus egg extracts. Strikingly, we demonstrate that MRN is required for recruitment of TOPBP1 to an ATR-activating structure that contains a single-stranded DNA (ssDNA) and a double-stranded DNA (dsDNA) junction and that this recruitment is necessary for phosphorylation of CHK1. We also show that the 911 (RAD9-RAD1-HUS1) complex is not required for TOPBP1 recruitment but is essential for TOPBP1 function. Thus, whereas MRN is required for TOPBP1 recruitment at an ssDNA-to-dsDNA junction, 911 is required for TOPBP1 "activation." These findings provide molecular insights into how ATR is activated.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Sítios de Ligação , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Proteínas Cromossômicas não Histona/metabolismo , Enzimas Reparadoras do DNA , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/genética , Ativação Enzimática , Humanos , Proteína Homóloga a MRE11 , Complexos Multiproteicos , Conformação de Ácido Nucleico , Fosforilação , Ligação Proteica , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Interferência de RNA , Transfecção , Proteínas Supressoras de Tumor/genética , Proteínas de Xenopus/genética , Xenopus laevis/genética
19.
Mol Cell ; 45(2): 196-209, 2012 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-22206868

RESUMO

Growth factors activate Ras, PI3K, and other signaling pathways. It is not well understood how these signals are translated by individual cells into a decision to proliferate or differentiate. Here, using single-cell image analysis of nerve growth factor (NGF)-stimulated PC12 cells, we identified a two-dimensional phospho-ERK (pERK)-phospho-AKT (pAKT) response map with a curved boundary that separates differentiating from proliferating cells. The boundary position remained invariant when different stimuli were used or upstream signaling components perturbed. We further identified Rasa2 as a negative feedback regulator that links PI3K to Ras, placing the stochastically distributed pERK-pAKT signals close to the decision boundary. This allows for uniform NGF stimuli to create a subpopulation of cells that differentiates with each cycle of proliferation. Thus, by linking a complex signaling system to a simpler intermediate response map, cells gain unique integration and control capabilities to balance cell number expansion with differentiation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Fator de Crescimento Neural/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Ciclina D/genética , Ciclina D/metabolismo , Ciclina D/fisiologia , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células PC12 , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/fisiologia , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-akt/fisiologia , Ratos , Proteínas Ativadoras de ras GTPase/metabolismo , Proteínas Ativadoras de ras GTPase/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA