Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biochem Mol Toxicol ; 36(9): e23133, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35686328

RESUMO

We set out to investigate the effects of gadodiamide and gadoteric acid, used for magnetic resonance imaging, on the lungs. In this study, 32 male Sprague Dawley rats were used. These were allocated into four groups; The first group (control) was untreated. The second group received isotonic saline on the first and fourth days of the week for 5 weeks. Following the same schedule, the third and fourth groups received a total of 2 mg/kg gadodiamide and gadoteric acid, respectively, in place of saline. The alveolar Wall thickness was evaluated. Gadodiamide and gadoteric acid significantly increased the numbers of collagen-3 and caspase-3 positive cells in the lung tissue (p < 0.05). In addition, these two substances increased the alveolar Wall thickness (p < 0.05). Furthermore, they increased the levels of malondialdehyde and glutathione (p < 0.05). This study demonstrates that both linear and macrocyclic contrast agents are toxic for the lungs in rats.


Assuntos
Meios de Contraste , Compostos Organometálicos , Animais , Caspase 3 , Quelantes , Gadolínio DTPA , Glutationa , Pulmão , Imageamento por Ressonância Magnética , Masculino , Malondialdeído , Compostos Organometálicos/farmacologia , Ratos , Ratos Sprague-Dawley
2.
Radiat Environ Biophys ; 61(2): 241-253, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35147734

RESUMO

Radiotherapy can be employed as a therapeutic modality alone in the early stages of cancer and is used together with other treatments such as surgery and chemotherapy in more advanced stages. However, exposure to ionizing radiation in association with radiotherapy affects several organs in the head and neck and can give rise to early and late side effects. Exposure to ionizing radiation used in radiotherapy is known to cause cell damage by leading to oxygen stress through the production of free oxygen radicals (such as superoxide radicals, hydroxyl radical, hydrogen peroxide, and singlet oxygen), depending on the total radiation dosage, the fractionation rate, radiosensitivity, and linear energy transfer. The purpose of the present study was to determine the potential protective role of a powerful and highly selective α2-adrenoreceptor agonist with a broad pharmacological spectrum against salivary gland damage induced by ionizing radiation exposure. Forty Sprague-Dawley rats were divided into five groups-control, ionizing radiation, ionizing radiation + dexmedetomidine (100 µg/kg), ionizing radiation + dexmedetomidine (200 µg/kg), and ionizing radiation + amifostine (200 mg/kg). Following exposure to ionizing radiation, we observed necrosis, fibrosis, and vascular congestions in parotid gland epithelial cells. We also observed increases in malondialdehyde (MDA) and cleaved Caspase-3 levels and a decrease in glutathione (GSH). In groups receiving dexmedetomidine, we observed necrotic epithelial cells, fibrosis and vascular congestion in parotid gland tissue, a decrease in MDA levels, and an increase in GSH. Dexmedetomidine may be a promising antioxidant agent for the prevention of oxidative damage following radiation exposure.


Assuntos
Amifostina , Dexmedetomidina , Amifostina/farmacologia , Amifostina/uso terapêutico , Animais , Dexmedetomidina/farmacologia , Fibrose , Glutationa/metabolismo , Estresse Oxidativo , Glândula Parótida/metabolismo , Glândula Parótida/efeitos da radiação , Ratos , Ratos Sprague-Dawley , Raios X
3.
Neurotox Res ; 39(4): 1338-1351, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34057703

RESUMO

Approximately 7 million people are reported to be undergoing radiotherapy (RT) at any one time in the world. However, it is still not possible to prevent damage to secondary organs that are off-target. This study, therefore, investigated the potential adverse effects of RT on the brain, using cognitive, histopathological, and biochemical methods, and the counteractive effect of the α2-adrenergic receptor agonist dexmedetomidine. Thirty-two male Sprague Dawley rats aged 5-6 months were randomly allocated into four groups: untreated control, and RT, RT + dexmedetomidine-100, and RT + dexmedetomidine-200-treated groups. The passive avoidance test was applied to all groups. The RT groups received total body X-ray irradiation as a single dose of 8 Gy. The rats were sacrificed 24 h after X-ray irradiation, and following the application of the passive avoidance test. The brain tissues were subjected to histological and biochemical evaluation. No statistically significant difference was found between the control and RT groups in terms of passive avoidance outcomes and 8-hydroxy-2'- deoxyguanosine (8-OHdG) positivity. In contrast, a significant increase in tissue MDA and GSH levels and positivity for TUNEL, TNF-α, and nNOS was observed between the control and the irradiation groups (p < 0.05). A significant decrease in these values was observed in the groups receiving dexmedetomidine. Compared with the control group, gradual elevation was determined in GSH levels in the RT group, followed by the RT + dexmedetomidine-100 and RT + dexmedetomidine-200 groups. Dexmedetomidine may be beneficial in countering the adverse effects of RT in the cerebral and hippocampal regions.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 2/uso terapêutico , Lesões Encefálicas/prevenção & controle , Dexmedetomidina/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Lesões Experimentais por Radiação/prevenção & controle , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/efeitos da radiação , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Dexmedetomidina/farmacologia , Masculino , Fármacos Neuroprotetores/farmacologia , Lesões Experimentais por Radiação/metabolismo , Lesões Experimentais por Radiação/patologia , Radioterapia/efeitos adversos , Radioterapia/métodos , Ratos , Ratos Sprague-Dawley
4.
Biomed Pharmacother ; 112: 108604, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30798139

RESUMO

OBJECTIVE: Nephrotoxicity is the most important side effect of the antineoplastic drug cisplatin, thereby restricting its use. The aim of this study was to investigate the protective effects of white tea infusions (WT) against renal damage induced by cisplatin (CP) in rats by biochemical and histopathological means. MATERIALS AND METHODS: This study used 24 female Sprague Dawley rats at 12-14 weeks of age and weighing 250-300 g. Rats were divided into three groups: Control, CP and CP + WT groups. CP was injected 7 mg/kg i.p as a single dose/rat in the CP group. White tea was given at a dose of 0.5% (w/v) for 4 weeks. At the end of the experiment, blood urea nitrogen (BUN), creatinine, uric acid, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and nuclear factor kappa B (NF-κB) along with caspase-3 in the kidney were evaluated in study. RESULTS: BUN, creatinine, TNF-α, NF-κB and IL-6 levels of the CP group showed a statisically significant increase in comparison to the control group. TNF-α, NF-κB and IL-6 levels showed a statistically significant decrease in the CP + WT group with respect to the CP group. Caspase-3 levels in tubular epithelial cells decreased in CP + WT group compared with CP group (p = 0.02). CONCLUSION: White tea infusions reduced significantly the nephrotoxicity of CP. The anti-nephrotoxic feature of the infusion may be attributed primarily to its anti-inflammatory and anti-apoptotic characteristics.


Assuntos
Injúria Renal Aguda/sangue , Injúria Renal Aguda/dietoterapia , Cisplatino/toxicidade , NF-kappa B/sangue , Chá , Fator de Necrose Tumoral alfa/sangue , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Animais , Antineoplásicos/toxicidade , Biomarcadores/sangue , Feminino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA