Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Diagn Interv Imaging ; 104(5): 243-247, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36681532

RESUMO

PURPOSE: The purpose of this study was to develop a method for generating synthetic MR images of macrotrabecular-massive hepatocellular carcinoma (MTM-HCC). MATERIALS AND METHODS: A set of abdominal MR images including fat-saturated T1-weighted images obtained during the arterial and portal venous phases of enhancement and T2-weighted images of 91 patients with MTM-HCC, and another set of MR abdominal images from 67 other patients were used. Synthetic images were obtained using a 3-step pipeline that consisted in: (i), generating a synthetic MTM-HCC tumor on a neutral background; (ii), randomly selecting a background among the 67 patients and a position inside the liver; and (iii), merging the generated tumor in the background at the specified location. Synthetic images were qualitatively evaluated by three radiologists and quantitatively assessed using a mix of 1-nearest neighbor classifier metric and Fréchet inception distance. RESULTS: A set of 1000 triplets of synthetic MTM-HCC images with consistent contrasts were successfully generated. Evaluation of selected synthetic images by three radiologists showed that the method gave realistic, consistent and diversified images. Qualitative and quantitative evaluation led to an overall score of 0.64. CONCLUSION: This study shows the feasibility of generating realistic synthetic MR images with very few training data, by leveraging the wide availability of liver backgrounds. Further studies are needed to assess the added value of those synthetic images for automatic diagnosis of MTM-HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/patologia , Imageamento por Ressonância Magnética/métodos , Meios de Contraste
2.
Diagn Interv Imaging ; 102(11): 653-658, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34600861

RESUMO

PURPOSE: The purpose of this study was to create a deep learning algorithm to infer the benign or malignant nature of breast nodules using two-dimensional B-mode ultrasound data initially marked as BI-RADS 3 and 4. MATERIALS AND METHODS: An ensemble of mask region-based convolutional neural networks (Mask-RCNN) combining nodule segmentation and classification were trained to explicitly localize the nodule and generate a probability of the nodule to be malignant on two-dimensional B-mode ultrasound. These probabilities were aggregated at test time to produce final results. Resulting inferences were assessed using area under the curve (AUC). RESULTS: A total of 460 ultrasound images of breast nodules classified as BI-RADS 3 or 4 were included. There were 295 benign and 165 malignant breast nodules used for training and validation, and another 137 breast nodules images used for testing. As a part of the challenge, the distribution of benign and malignant breast nodules in the test database remained unknown. The obtained AUC was 0.69 (95% CI: 0.57-0.82) on the training set and 0.67 on the test set. CONCLUSION: The proposed deep learning solution helps classify benign and malignant breast nodules based solely on two-dimensional ultrasound images initially marked as BIRADS 3 and 4.


Assuntos
Algoritmos , Redes Neurais de Computação , Área Sob a Curva , Humanos , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA