Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 1117, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212351

RESUMO

DNA polymerase eta (Polη) is the only translesion synthesis polymerase capable of error-free bypass of UV-induced cyclobutane pyrimidine dimers. A deficiency in Polη function is associated with the human disease Xeroderma pigmentosum variant (XPV). We hereby report the case of a 60-year-old woman known for XPV and carrying a Polη Thr191Pro variant in homozygosity. We further characterize the variant in vitro and in vivo, providing molecular evidence that the substitution abrogates polymerase activity and results in UV sensitivity through deficient damage bypass. This is the first functional molecular characterization of a missense variant of Polη, whose reported pathogenic variants have thus far been loss of function truncation or frameshift mutations. Our work allows the upgrading of Polη Thr191Pro from 'variant of uncertain significance' to 'likely pathogenic mutant', bearing direct impact on molecular diagnosis and genetic counseling. Furthermore, we have established a robust experimental approach that will allow a precise molecular analysis of further missense mutations possibly linked to XPV. Finally, it provides insight into critical Polη residues that may be targeted to develop small molecule inhibitors for cancer therapeutics.


Assuntos
Xeroderma Pigmentoso , Humanos , Pessoa de Meia-Idade , Dano ao DNA , Mutação de Sentido Incorreto , Prolina/genética , Dímeros de Pirimidina , Raios Ultravioleta , Xeroderma Pigmentoso/genética , Xeroderma Pigmentoso/patologia , Feminino
2.
Nucleic Acids Res ; 47(21): 11268-11283, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31586398

RESUMO

Accurate DNA replication is critical for the maintenance of genome integrity and cellular survival. Cancer-associated alterations often involve key players of DNA replication and of the DNA damage-signalling cascade. Post-translational modifications play a fundamental role in coordinating replication and repair and central among them is ubiquitylation. We show that the E3 ligase UBR5 interacts with components of the replication fork, including the translesion synthesis (TLS) polymerase polη. Depletion of UBR5 leads to replication problems, such as slower S-phase progression, resulting in the accumulation of single stranded DNA. The effect of UBR5 knockdown is related to a mis-regulation in the pathway that controls the ubiquitylation of histone H2A (UbiH2A) and blocking this modification is sufficient to rescue the cells from replication problems. We show that the presence of polη is the main cause of replication defects and cell death when UBR5 is silenced. Finally, we unveil a novel interaction between polη and H2A suggesting that UbiH2A could be involved in polη recruitment to the chromatin and the regulation of TLS.


Assuntos
Dano ao DNA , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Células Cultivadas , Dano ao DNA/genética , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , DNA Polimerase Dirigida por DNA/genética , Histonas/metabolismo , Humanos , Ligação Proteica , Processamento de Proteína Pós-Traducional , Fase S/genética , Ubiquitinação/fisiologia
3.
Biochem J ; 469(2): 199-210, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25967238

RESUMO

In blood platelets, stimulation of G protein-coupled receptors (GPCRs) by thrombin triggers the activation of Src family kinases (SFKs), resulting in the tyrosine-phosphorylation of multiple substrates, but the mechanism underlying this process is still poorly understood. In the present study, we show that the time-dependent protein-tyrosine phosphorylation triggered by thrombin in human or murine platelets was totally suppressed only upon concomitant chelation of intracellular Ca(2+) and inhibition of SFKs. Thrombin-induced activation of SFKs was regulated by intracellular Ca(2+) and accordingly the Ca(2+) ionophore A23187 was sufficient to stimulate SFKs. A23187 also triggered the phosphorylation and activation of the Ca(2+)-dependent focal adhesion kinase Pyk2 and Pyk2 activation by thrombin was Ca(2+)-dependent. Stimulation of SFKs by thrombin or A23187 was strongly reduced in platelets from Pyk2 knockout (KO) mice, as was the overall pattern of protein-tyrosine phosphorylation. By immunoprecipitation experiments, we demonstrate that Lyn and Fyn, but not Src, were activated by Pyk2. Inhibition of SFKs by PP2 also reduced the phosphorylation of Pyk2 in thrombin or A23187-stimulated platelets. Analysis of KO mice demonstrated that Fyn, but not Lyn, was required for complete Pyk2 phosphorylation by thrombin. Finally, PP2 reduced aggregation of murine platelets to a level comparable to that of Pyk2-deficient platelets, but did not have further effects in the absence of Pyk2. These results indicate that in thrombin-stimulated platelets, stimulation of Pyk2 by intracellular Ca(2+) initiates SFK activation, establishing a positive loop that reinforces the Pyk2/SFK axis and allows the subsequent massive tyrosine phosphorylation of multiple substrates required for platelet aggregation.


Assuntos
Plaquetas/enzimologia , Sinalização do Cálcio/efeitos dos fármacos , Quinase 2 de Adesão Focal/metabolismo , Hemostáticos/farmacologia , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Trombina/farmacologia , Quinases da Família src/metabolismo , Animais , Plaquetas/citologia , Sinalização do Cálcio/fisiologia , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Quinase 2 de Adesão Focal/genética , Humanos , Camundongos , Camundongos Knockout , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Ativação Plaquetária/efeitos dos fármacos , Ativação Plaquetária/genética , Proteínas Proto-Oncogênicas c-fyn/genética , Quinases da Família src/genética
4.
Arterioscler Thromb Vasc Biol ; 35(6): 1374-81, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25908768

RESUMO

OBJECTIVE: To investigate the roles and signaling pathways of CD40L and CD40 in platelet-platelet interactions and thrombus formation under conditions relevant for atherothrombosis. APPROACH AND RESULTS: Platelets from mice prone to atherosclerosis lacking CD40L (Cd40lg(-/-)Apoe(-/-)) showed diminished αIIbß3 activation and α-granule secretion in response to glycoprotein VI stimulation, whereas these responses of CD40-deficient platelets (Cd40(-/-)Apoe(-/-)) were not decreased. Using blood from Cd40lg(-/-)Apoe(-/-) and Cd40(-/-)Apoe(-/-) mice, the glycoprotein VI-dependent formation of dense thrombi was impaired on atherosclerotic plaque material or on collagen, in comparison with Apoe(-/-) blood. In all genotypes, addition of CD40L to the blood enhanced the growth of dense thrombi on plaques and collagen. Similarly, CD40L enhanced glycoprotein VI-induced platelet aggregation, even with platelets deficient in CD40. This potentiation was antagonized in Pik3cb(R/R) platelets or by inhibiting phosphatidylinositol 3-kinase ß (PI3Kß). Addition of CD40L also enhanced collagen-induced Akt phosphorylation, which was again antagonized by absence or inhibition of PI3Kß. Finally, platelets from Chuk1(A/A)Apoe(-/-) mice deficient in IκB kinase α (IKKα), implicated in CD40 signaling to nuclear factor (NF) κB, showed unchanged responses to CD40L in aggregation or thrombus formation. CONCLUSIONS: Under atherogenic conditions, CD40L enhances collagen-induced platelet-platelet interactions by supporting integrin αIIbß3 activation, secretion and thrombus growth via PI3Kß, but not via CD40 and IKKα/NFκB. This role of CD40L exceeds the no more than modest role of CD40 in thrombus formation.


Assuntos
Aterosclerose/metabolismo , Plaquetas/metabolismo , Antígenos CD40/metabolismo , Ligante de CD40/metabolismo , Quinase I-kappa B/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Trombose/metabolismo , Animais , Aterosclerose/patologia , Colágeno/metabolismo , Camundongos , Ativação Plaquetária , Transdução de Sinais , Trombose/patologia
5.
J Biol Chem ; 288(25): 18194-203, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23640884

RESUMO

Proline-rich tyrosine kinase 2 (Pyk2) is activated by various agonists in platelets. We evaluated the signaling mechanism and the functional role of Pyk2 in platelets by using pharmacological inhibitors and Pyk2-deficient platelets. We found that platelet aggregation and secretion in response to 2-methylthio-ADP (2-MeSADP) and AYPGKF were diminished in the presence of Pyk2 inhibitors or in Pyk2-deficient platelets, suggesting that Pyk2 plays a positive regulatory role in platelet functional responses. It has been shown that ADP-, but not thrombin-induced thromboxane (TxA2) generation depends on integrin signaling. Unlike ADP, thrombin activates G12/13 pathways, and G12/13 pathways can substitute for integrin signaling for TxA2 generation. We found that Pyk2 was activated downstream of both G12/13 and integrin-mediated pathways, and both 2-MeSADP- and AYPGKF-induced TxA2 generation was significantly diminished in Pyk2-deficient platelets. In addition, TxA2 generation induced by co-stimulation of Gi and Gz pathways, which is dependent on integrin signaling, was inhibited by blocking Pyk2. Furthermore, inhibition of 2-MeSADP-induced TxA2 generation by fibrinogen receptor antagonist was not rescued by co-stimulation of G12/13 pathways in the presence of Pyk2 inhibitor. We conclude that Pyk2 is a common signaling effector downstream of both G12/13 and integrin αIIbß3 signaling, which contributes to thromboxane generation.


Assuntos
Plaquetas/metabolismo , Quinase 2 de Adesão Focal/metabolismo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Tromboxano A2/biossíntese , Difosfato de Adenosina/análogos & derivados , Difosfato de Adenosina/farmacologia , Animais , Plaquetas/efeitos dos fármacos , Western Blotting , Células Cultivadas , Relação Dose-Resposta a Droga , Quinase 2 de Adesão Focal/antagonistas & inibidores , Quinase 2 de Adesão Focal/genética , Humanos , Camundongos , Camundongos Knockout , Oligopeptídeos/farmacologia , Fosforilação/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Tionucleotídeos/farmacologia , Fatores de Tempo , Tirfostinas/farmacologia
6.
Nanomedicine ; 8(8): 1329-36, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22542822

RESUMO

Nanomaterials are attracting growing interest for their potential use in several applications as nanomedicine; therefore, the analysis of their potential toxic effects on various cellular models, including circulating blood cells, is mandatory. This study aimed to investigate the effect of three unrelated nanomaterials, namely nanoscale silica, multiwalled carbon nanotubes, and carbon black, on platelet activation and aggregation. We found that these nanomaterials stimulate some of the typical biochemical pathways involved in canonical platelet activation, such as the stimulation of phospholipase C and Rap1b, resulting in the integrin α(IIb)ß3-mediated platelet aggregation, through a mechanism largely dependent on the release of the extracellular second messengers ADP and thromboxane A2. Importantly, we found that doses of nanoparticles unable to trigger appreciable responses can synergize with subthreshold amounts of physiological agonists to mediate platelet aggregation, indicating that even small amounts of nanomaterials in the bloodstream might contribute to the development of thrombosis. FROM THE CLINICAL EDITOR: In this study, nanosized particles of three virtually unrelated materials (silica, multi-walled carbon nanotubes and carbon black) were investigated regarding their effects on platelet activation and aggregation. All were found to stimulate some of the typical biochemical pathways involved in canonical platelet activation, and were found to have synergistic effects with physiologic platelet activator agonists.


Assuntos
Nanopartículas , Nanotubos de Carbono , Ativação Plaquetária/efeitos dos fármacos , Fuligem , Proteínas Sanguíneas/metabolismo , Humanos , Técnicas In Vitro , Integrina alfa2/sangue , Nanopartículas/toxicidade , Nanotubos de Carbono/efeitos adversos , Fosfoproteínas/metabolismo , Agregação Plaquetária/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Dióxido de Silício/farmacologia , Fuligem/efeitos adversos , Fuligem/farmacologia , Fosfolipases Tipo C/sangue , Proteínas rap de Ligação ao GTP/sangue
7.
Blood ; 119(3): 847-56, 2012 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-22106345

RESUMO

Integrin α2ß1-mediated adhesion of human platelets to monomeric type I collagen or to the GFOGER peptide caused a time-dependent activation of PI3K and Akt phosphorylation. This process was abrogated by pharmacologic inhibition of PI3Kß, but not of PI3Kγ or PI3Kα. Moreover, Akt phosphorylation was undetectable in murine platelets expressing a kinase-dead mutant of PI3Kß (PI3Kß(KD)), but occurred normally in PI3Kγ(KD) platelets. Integrin α2ß1 failed to stimulate PI3Kß in platelets from phospholipase Cγ2 (PLCγ2)-knockout mice, and we found that intracellular Ca(2+) linked PLCγ2 to PI3Kß activation. Integrin α2ß1 also caused a time-dependent stimulation of the focal kinase Pyk2 downstream of PLCγ2 and intracellular Ca(2+). Whereas activation of Pyk2 occurred normally in PI3Kß(KD) platelets, stimulation of PI3Kß was strongly reduced in Pyk2-knockout mice. Neither Pyk2 nor PI3Kß was required for α2ß1-mediated adhesion and spreading. However, activation of Rap1b and inside-out stimulation of integrin αIIbß3 were reduced after inhibition of PI3Kß and were significantly impaired in Pyk2-deficient platelets. Finally, both PI3Kß and Pyk2 significantly contributed to thrombus formation under flow. These results demonstrate that Pyk2 regulates PI3Kß downstream of integrin α2ß1, and document a novel role for Pyk2 and PI3Kß in integrin α2ß1 promoted inside-out activation of integrin αIIbß3 and thrombus formation.


Assuntos
Plaquetas/metabolismo , Quinase 2 de Adesão Focal/fisiologia , Integrina alfa2beta1/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Adesividade Plaquetária , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Cálcio/metabolismo , Colágeno/metabolismo , Fibrinogênio/metabolismo , Humanos , Immunoblotting , Camundongos , Camundongos Knockout , Fosforilação , Agregação Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Transdução de Sinais
8.
Blood ; 114(10): 2193-6, 2009 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-19515725

RESUMO

Phosphatidylinositol 3-kinase (PI3K) isoforms PI3Kbeta and PI3Kgamma are implicated in platelet adhesion, activation, and aggregation, but their relative contribution is still unclear or controversial. Here, we report the first comparative functional analysis of platelets from mice expressing a catalytically inactive form of PI3Kbeta or PI3Kgamma. We demonstrate that both isoforms were similarly required for maximal activation of the small GTPase Rap1b and for complete platelet aggregation upon stimulation of G protein-coupled receptors for adenosine 5'-diphosphate (ADP) or U46619. Their contribution to these events, however, was largely redundant and dispensable. However, PI3Kbeta, but not PI3Kgamma, enzymatic activity was absolutely required for Akt phosphorylation, Rap1 activation, and platelet aggregation downstream of the immunoreceptor tyrosine-based activation motif (ITAM)-bearing receptor glycoprotein VI (GPVI). Moreover, PI3Kbeta was a major essential regulator of platelet adhesion to fibrinogen and of integrin alpha(IIb)beta(3)-mediated spreading. These results provide genetic evidence for a crucial and selective role of PI3Kbeta in signaling through GPVI and integrin alpha(IIb)beta(3).


Assuntos
Plaquetas/enzimologia , Fosfatidilinositol 3-Quinases/metabolismo , Agregação Plaquetária/fisiologia , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismo , Transdução de Sinais/fisiologia , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Motivos de Aminoácidos/genética , Animais , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Fibrinogênio/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos , Camundongos Knockout , Fosfatidilinositol 3-Quinases/genética , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Adesividade Plaquetária/efeitos dos fármacos , Adesividade Plaquetária/fisiologia , Agregação Plaquetária/efeitos dos fármacos , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/genética , Glicoproteínas da Membrana de Plaquetas/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Agonistas do Receptor Purinérgico P2 , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Vasoconstritores/farmacologia , Proteínas rap de Ligação ao GTP/genética , Proteínas rap de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA