Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurogastroenterol Motil ; 35(11): e14669, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37702100

RESUMO

BACKGROUND: Gastroparesis is defined by delayed gastric emptying (GE) without obstruction. Studies suggest targeting heme oxygenase-1 (HO1) may ameliorate diabetic gastroparesis. Upregulation of HO1 expression via interleukin-10 (IL-10) in the gastric muscularis propria is associated with reversal of delayed GE in diabetic NOD mice. IL-10 activates the M2 cytoprotective phenotype of macrophages and induces expression of HO1 protein. Here, we assess delivery of HO1 by recombinant adeno-associated viruses (AAVs) in diabetic mice with delayed GE. METHODS: C57BL6 diabetic delayed GE mice were injected with 1 × 1012 vg scAAV9-cre, scAAV9-GFP, or scAAV9-HO1 particles. Changes to GE were assessed weekly utilizing our [13 C]-octanoic acid breath test. Stomach tissue was collected to assess the effect of scAAV9 treatment on Kit, NOS1, and HO1 expression. KEY RESULTS: Delayed GE returned to normal within 2 weeks of treatment in 7/12 mice receiving scAAV9-cre and in 4/5 mice that received the scAAV9-GFP, whereas mice that received scAAV9-HO1 did not respond in the same manner and had GE that took significantly longer to return to normal (6/7 mice at 4-6 weeks). Kit, NOS1, and HO1 protein expression in scAAV9-GFP-treated mice with normal GE were not significantly different compared with diabetic mice with delayed GE. CONCLUSIONS AND INFERENCES: Injection of scAAV9 into diabetic C57BL6 mice produced a biological response that resulted in acceleration of GE independently of the cargo delivered by the AAV9 vector. Further research is needed to determine whether use of AAV mediated gene transduction in the gastric muscularis propria is beneficial and warranted.


Assuntos
Diabetes Mellitus Experimental , Gastroparesia , Camundongos , Animais , Dependovirus/genética , Interleucina-10 , Camundongos Endogâmicos NOD , Camundongos Endogâmicos C57BL
2.
Cell Mol Gastroenterol Hepatol ; 13(6): 1849-1862, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35245688

RESUMO

The gut contains the largest macrophage pool in the body, with populations of macrophages residing in the mucosa and muscularis propria of the gastrointestinal (GI) tract. Muscularis macrophages (MMs), which are located within the muscularis propria, interact with cells essential for GI function, such as interstitial cells of Cajal, enteric neurons, smooth muscle cells, enteric glia, and fibroblast-like cells, suggesting that these immune cells contribute to several aspects of GI function. This review focuses on the latest insights on the factors contributing to MM heterogeneity and the functional interaction of MMs with other cell types essential for GI function. This review integrates the latest findings on macrophages in other organs with increasing knowledge of MMs to better understand their role in a healthy and diseased gut. We describe the factors that contribute to (muscularis macrophage) MM heterogeneity, and the nature of MM interactions with cells regulating GI function. Finally, we also describe the increasing evidence suggesting a critical role of another immune cell type, the mast cell, in normal and diseased GI physiology.


Assuntos
Trato Gastrointestinal , Mastócitos , Trato Gastrointestinal/fisiologia , Homeostase , Macrófagos/metabolismo , Músculo Liso
3.
Neurogastroenterol Motil ; 33(3): e13993, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33020982

RESUMO

BACKGROUND AND AIM: Muscularis macrophages (MMs) not only mediate the innate immunity, but also functionally interact with cells important for gastrointestinal motility. The aim of this study was to determine the spatial relationship and types of contacts between the MMs and neighboring cells in the muscularis propria of human and mouse stomach, small intestine, and large intestine. METHODS: The distribution and morphology of MMs and their contacts with other cells were investigated by immunohistochemistry and transmission electron microscopy. KEY RESULTS: Immunohistochemistry showed variable shape and number of MMs according to their location in different portions of the muscle coat. By double labeling, a close association between MMs and neighboring cells, that is, neurons, smooth muscle cells, interstitial cells of Cajal (ICCs), telocytes (TCs)/PDGFRα-positive cells, was seen. Electron microscopy demonstrated that in the muscle layers of both animal species, MMs have similar ultrastructural features and have specialized cell-to-cell contacts with smooth muscle cells and TCs/PDGFRα-positive cells but not with ICCs and enteric neurons. CONCLUSION & INFERENCES: This study describes varying patterns of distribution of MMs between different regions of the gut, and reports the presence of distinct and extended cell-to-cell contacts between MMs and smooth muscle cells and between MMs and TCs/PDGFRα-positive cells. In contrast, MMs, although close to ICCs and nerve elements, did not make contact with them. These findings indicate specialized and variable roles for MMs in the modulation of gastrointestinal motility whose significance should be more closely investigated in normal and pathological conditions.


Assuntos
Mucosa Gástrica/citologia , Junções Intercelulares/ultraestrutura , Mucosa Intestinal/citologia , Macrófagos/citologia , Miócitos de Músculo Liso/citologia , Telócitos/citologia , Animais , Comunicação Celular , Sistema Nervoso Entérico , Feminino , Mucosa Gástrica/metabolismo , Mucosa Gástrica/ultraestrutura , Humanos , Células Intersticiais de Cajal/citologia , Células Intersticiais de Cajal/metabolismo , Células Intersticiais de Cajal/ultraestrutura , Mucosa Intestinal/metabolismo , Mucosa Intestinal/ultraestrutura , Macrófagos/metabolismo , Macrófagos/ultraestrutura , Masculino , Camundongos , Microscopia Eletrônica de Transmissão , Pessoa de Meia-Idade , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/ultraestrutura , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Telócitos/metabolismo , Telócitos/ultraestrutura
5.
Gastroenterology ; 154(8): 2122-2136.e12, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29501441

RESUMO

BACKGROUND & AIMS: Muscularis propria macrophages lie close to cells that regulate gastrointestinal motor function, including interstitial cells of Cajal (ICC) and myenteric neurons. In animal models of diabetic gastroparesis, development of delayed gastric emptying has been associated with loss of macrophages that express cytoprotective markers and reduced networks of ICC. Mice with long-term diabetes and normal gastric emptying have macrophages that express anti-inflammatory markers and have normal gastric ICC. Mice homozygous for the osteopetrosis spontaneous mutation in the colony-stimulating factor 1 gene (Csf1op/op) do not have macrophages; when they are given streptozotocin to induce diabetes, they do not develop delayed gastric emptying. We investigated whether population of the gastric muscularis propria of diabetic Csf1op/op mice with macrophages is necessary to change gastric emptying, ICC, and myenteric neurons and investigated the macrophage-derived factors that determine whether diabetic mice do or do not develop delayed gastric emptying. METHODS: Wild-type and Csf1op/op mice were given streptozotocin to induce diabetes. Some Csf1op/op mice were given daily intraperitoneal injections of CSF1 for 7 weeks; gastric tissues were collected and cellular distributions were analyzed by immunohistochemistry. CD45+, CD11b+, F4/80+ macrophages were dissociated from gastric muscularis propria, isolated by flow cytometry and analyzed by quantitative real-time polymerase chain reaction. Cultured gastric muscularis propria from Csf1op/op mice was exposed to medium that was conditioned by culture with bone marrow-derived macrophages from wild-type mice. RESULTS: Gastric muscularis propria from Csf1op/op mice given CSF1 contained macrophages; 11 of 15 diabetic mice given CSF1 developed delayed gastric emptying and had damaged ICC. In non-diabetic Csf1op/op mice, administration of CSF1 reduced numbers of gastric myenteric neurons but did not affect the proportion of nitrergic neurons or ICC. In diabetic Csf1op/op mice given CSF1 that developed delayed gastric emptying, the proportion of nitrergic neurons was the same as in non-diabetic wild-type controls. Medium conditioned by macrophages previously exposed to oxidative injury caused damage to ICC in cultured gastric muscularis propria from Csf1op/op mice; neutralizing antibodies against IL6R or TNF prevented this damage to ICC. CD45+, CD11b+, and F4/80+ macrophages isolated from diabetic wild-type mice with delayed gastric emptying expressed higher levels of messenger RNAs encoding inflammatory markers (IL6 and inducible nitric oxide synthase) and lower levels of messenger RNAs encoding markers of anti-inflammatory cells (heme oxygenase 1, arginase 1, and FIZZ1) than macrophages isolated from diabetic mice with normal gastric emptying. CONCLUSIONS: In studies of Csf1op/op and wild-type mice with diabetes, we found delayed gastric emptying to be associated with increased production of inflammatory factors, and reduced production of anti-inflammatory factors, by macrophages, leading to loss of ICC.


Assuntos
Diabetes Mellitus Experimental/complicações , Esvaziamento Gástrico/fisiologia , Gastroparesia/fisiopatologia , Macrófagos/fisiologia , Estômago/fisiopatologia , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/genética , Gastroparesia/etiologia , Humanos , Imuno-Histoquímica , Células Intersticiais de Cajal/fisiologia , Fator Estimulador de Colônias de Macrófagos/genética , Camundongos , Músculo Liso/citologia , Músculo Liso/patologia , Músculo Liso/fisiopatologia , Mutação , Estômago/citologia , Estômago/patologia , Estreptozocina/toxicidade
6.
Gastroenterology ; 153(2): 521-535.e20, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28438610

RESUMO

BACKGROUND & AIMS: Depletion of interstitial cells of Cajal (ICCs) is common in diabetic gastroparesis. However, in approximately 20% of patients with diabetes, gastric emptying (GE) is accelerated. GE also occurs faster in obese individuals, and is associated with increased blood levels of glucose in patients with type 2 diabetes. To understand the fate of ICCs in hyperinsulinemic, hyperglycemic states characterized by rapid GE, we studied mice with mutation of the leptin receptor (Leprdb/db), which in our colony had accelerated GE. We also investigated hyperglycemia-induced signaling in the ICC lineage and ICC dependence on glucose oxidative metabolism in mice with disruption of the succinate dehydrogenase complex, subunit C gene (Sdhc). METHODS: Mice were given breath tests to analyze GE of solids. ICCs were studied by flow cytometry, intracellular electrophysiology, isometric contractility measurement, reverse-transcription polymerase chain reaction, immunoblot, immunohistochemistry, enzyme-linked immunosorbent assays, and metabolite assays; cells and tissues were manipulated pharmacologically and by RNA interference. Viable cell counts, proliferation, and apoptosis were determined by methyltetrazolium, Ki-67, proliferating cell nuclear antigen, bromodeoxyuridine, and caspase-Glo 3/7 assays. Sdhc was disrupted in 2 different strains of mice via cre recombinase. RESULTS: In obese, hyperglycemic, hyperinsulinemic female Leprdb/db mice, GE was accelerated and gastric ICC and phasic cholinergic responses were increased. Female KitK641E/+ mice, which have genetically induced hyperplasia of ICCs, also had accelerated GE. In isolated cells of the ICC lineage and gastric organotypic cultures, hyperglycemia stimulated proliferation by mitogen-activated protein kinase 1 (MAPK1)- and MAPK3-dependent stabilization of ets variant 1-a master transcription factor for ICCs-and consequent up-regulation of v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (KIT) receptor tyrosine kinase. Opposite changes occurred in mice with disruption of Sdhc. CONCLUSIONS: Hyperglycemia increases ICCs via oxidative metabolism-dependent, MAPK1- and MAPK3-mediated stabilization of ets variant 1 and increased expression of KIT, causing rapid GE. Increases in ICCs might contribute to the acceleration in GE observed in some patients with diabetes.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Esvaziamento Gástrico/fisiologia , Hiperglicemia/fisiopatologia , Células Intersticiais de Cajal/citologia , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Proto-Oncogênicas c-kit/fisiologia , Fatores de Transcrição/fisiologia , Animais , Feminino , Humanos , Células Intersticiais de Cajal/fisiologia , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/fisiologia , Proteína Quinase 3 Ativada por Mitógeno/fisiologia , Receptores para Leptina/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA