Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37693594

RESUMO

Aging and metabolic diseases are accompanied by systemic inflammation, but the mechanisms that induce this state are not known. We developed a human bone-marrow organoid system to explore mechanisms underlying metabolic-disease associated systemic inflammation. We find that a distinct type of hematopoietic stem cell (HSC) develops in the adipose-rich, yellow bone marrow, which is known to gradually replace the hematopoietic red marrow as we age and during metabolic disease. Unlike HSCs derived from the red bone marrow, HSCs derived from the yellow bone marrow have higher proliferation rates, increase myeloid differentiation, skew towards pro-inflammatory M1 macrophage differentiation, and express a distinct transcriptomic profile associated with responsiveness to wounding. Yellow marrow-derived HSCs express higher levels of the leptin receptor, which we find to be further increased in patients with type 2 diabetes. Our work demonstrates that the human long bone yellow marrow is a niche for a distinct class of HSCs which could underlie hematopoietic dysfunction during aging and metabolic disease processes suggesting a shared inflammaging mechanism.

2.
Cell Chem Biol ; 30(6): 618-631.e12, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37290440

RESUMO

Recurrent JAK2 alterations are observed in myeloproliferative neoplasms, B-cell acute lymphoblastic leukemia, and other hematologic malignancies. Currently available type I JAK2 inhibitors have limited activity in these diseases. Preclinical data support the improved efficacy of type II JAK2 inhibitors, which lock the kinase in the inactive conformation. By screening small molecule libraries, we identified a lead compound with JAK2 selectivity. We highlight analogs with on-target biochemical and cellular activity and demonstrate in vivo activity using a mouse model of polycythemia vera. We present a co-crystal structure that confirms the type II binding mode of our compounds with the "DFG-out" conformation of the JAK2 activation loop. Finally, we identify a JAK2 G993A mutation that confers resistance to the type II JAK2 inhibitor CHZ868 but not to our analogs. These data provide a template for identifying novel type II kinase inhibitors and inform further development of agents targeting JAK2 that overcome resistance.


Assuntos
Transtornos Mieloproliferativos , Humanos , Mutação , Transtornos Mieloproliferativos/genética , Janus Quinase 2/genética , Janus Quinase 2/metabolismo
3.
J Clin Invest ; 129(12): 5169-5186, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31638598

RESUMO

Antagonists of the type 1 cysteinyl leukotriene receptor (CysLT1R) are widely used to treat asthma and allergic rhinitis, with variable response rates. Alveolar macrophages express UDP-specific P2Y6 receptors that can be blocked by off-target effects of CysLT1R antagonists. Sensitizing intranasal doses of an extract from the house dust mite Dermatophagoides farinae (Df) sharply increased the levels of UDP detected in bronchoalveolar lavage fluid of mice. Conditional deletion of P2Y6 receptors before sensitization exacerbated eosinophilic lung inflammation and type 2 cytokine production in response to subsequent Df challenge. P2Y6 receptor signaling was necessary for dectin-2-dependent production of protective IL-12p40 and Th1 chemokines by alveolar macrophages, leading to activation of NK cells to generate IFN-γ. Administration of CysLT1R antagonists during sensitization blocked UDP-elicited potentiation of IL-12p40 production by macrophages in vitro, suppressed the Df-induced production of IL-12p40 and IFN-γ in vivo, and suppressed type 2 inflammation only in P2Y6-deficient mice. Thus, P2Y6 receptor signaling drives an innate macrophage/IL-12/NK cell/IFN-γ axis that prevents inappropriate allergic type 2 immune responses on respiratory allergen exposure and counteracts the Th2 priming effect of CysLT1R signaling at sensitization. Targeting P2Y6 signaling might prove to be a potential additional treatment strategy for allergy.


Assuntos
Hipersensibilidade/metabolismo , Inflamação/metabolismo , Leucotrienos/metabolismo , Macrófagos Alveolares/metabolismo , Receptores Purinérgicos P2/metabolismo , Transdução de Sinais , Alérgenos/imunologia , Animais , Antígenos de Dermatophagoides/imunologia , Asma/imunologia , Bioensaio , Líquido da Lavagem Broncoalveolar , Linfócitos T CD8-Positivos/citologia , Dermatophagoides farinae , Feminino , Células-Tronco Hematopoéticas/citologia , Subunidade p35 da Interleucina-12/metabolismo , Ligantes , Pulmão/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Eosinofilia Pulmonar
4.
J Immunol ; 200(3): 915-927, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29282304

RESUMO

Cysteinyl leukotrienes (cysLTs) facilitate mucosal type 2 immunopathology by incompletely understood mechanisms. Aspirin-exacerbated respiratory disease, a severe asthma subtype, is characterized by exaggerated eosinophilic respiratory inflammation and reactions to aspirin, each involving the marked overproduction of cysLTs. Here we demonstrate that the type 2 cysLT receptor (CysLT2R), which is not targeted by available drugs, is required in two different models to amplify eosinophilic airway inflammation via induced expression of IL-33 by lung epithelial cells. Endogenously generated cysLTs induced eosinophilia and expanded group 2 innate lymphoid cells (ILC2s) in aspirin-exacerbated respiratory disease-like Ptges-/- mice. These responses were mitigated by deletions of either Cysltr2 or leukotriene C4 synthase (Ltc4s). Administrations of either LTC4 (the parent cysLT) or the selective CysLT2R agonist N-methyl LTC4 to allergen sensitized wild-type mice markedly boosted ILC2 expansion and IL-5/IL-13 generation in a CysLT2R-dependent manner. Expansion of ILC2s and IL-5/IL-13 generation reflected CysLT2R-dependent production of IL-33 by alveolar type 2 cells, which engaged in a bilateral feed-forward loop with ILC2s. Deletion of Cysltr1 blunted LTC4-induced ILC2 expansion and eosinophilia but did not alter IL-33 induction. Pharmacological blockade of CysLT2R prior to inhalation challenge of Ptges-/- mice with aspirin blocked IL-33-dependent mast cell activation, mediator release, and changes in lung function. Thus, CysLT2R signaling, IL-33-dependent ILC2 expansion, and IL-33-driven mast cell activation are necessary for induction of type 2 immunopathology and aspirin sensitivity. CysLT2R-targeted drugs may interrupt these processes.


Assuntos
Aspirina/imunologia , Asma Induzida por Aspirina/patologia , Interleucina-33/imunologia , Mastócitos/imunologia , Receptores de Leucotrienos/imunologia , Animais , Asma Induzida por Aspirina/imunologia , Cisteína/biossíntese , Eosinofilia/imunologia , Eosinofilia/patologia , Células Epiteliais/metabolismo , Glutationa Transferase/genética , Interleucina-13/biossíntese , Interleucina-33/biossíntese , Interleucina-5/biossíntese , Leucotrieno E4/biossíntese , Leucotrienos/biossíntese , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Prostaglandina-E Sintases/genética , Receptores de Leucotrienos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA