Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Chem Toxicol ; 191: 114865, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38997060

RESUMO

Cadmium (Cd) is recognized as a significant hazard to human health, with exposure linked to a variety of adverse outcomes including various cancers, cardiovascular diseases, chronic kidney disease, and osteoporosis. Residing in areas contaminated with Cd is undoubtedly a risk factor for developing the aforementioned conditions. However, the risk of developing Cd-related disorders is not uniform among individuals. Deficiencies in iron, zinc, and calcium, along with iron deficiency anemia, decreased lung function often seen in chronic obstructive pulmonary disease (COPD), and low circulating levels of parathyroid hormone (PTH), may enhance Cd intestinal absorption. Conversely, chronic liver disorders can lead to the progressive loss of hepatocytes and the release of free Cd into the circulation, resulting in elevated Cd blood levels. Moreover, studies comparing Cd blood levels between different regions within a country or between two groups of individuals, for example, those with and without osteoporosis, should consider all variables that may impact Cd levels. These include age, sex, alcohol consumption, blood levels of iron, calcium, and zinc, the presence of anemia, COPD, PTH levels, and the presence of liver or kidney disease. In this review, we delve into all factors that could influence Cd blood levels, providing a comprehensive analysis.

2.
Biomolecules ; 14(6)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38927054

RESUMO

Zinc (Zn) is the second most abundant metal in the human body and is essential for the function of 10% of all proteins. As metals cannot be synthesized or degraded, they must be assimilated from the diet by specialized transport proteins, which unfortunately also provide an entry route for the toxic metal pollutant cadmium (Cd). The intestinal absorption of Zn depends on the composition of food that is consumed, firstly the amount of Zn itself and then the quantity of other food constituents such as phytate, protein, and calcium (Ca). In cells, Zn is involved in the regulation of intermediary metabolism, gene expression, cell growth, differentiation, apoptosis, and antioxidant defense mechanisms. The cellular influx, efflux, subcellular compartmentalization, and trafficking of Zn are coordinated by transporter proteins, solute-linked carriers 30A and 39A (SLC30A and SLC39A), known as the ZnT and Zrt/Irt-like protein (ZIP). Because of its chemical similarity with Zn and Ca, Cd disrupts the physiological functions of both. The concurrent induction of a Zn efflux transporter ZnT1 (SLC30A1) and metallothionein by Cd disrupts the homeostasis and reduces the bioavailability of Zn. The present review highlights the increased mortality and the severity of various diseases among Cd-exposed persons and the roles of Zn and other transport proteins in the manifestation of Cd cytotoxicity. Special emphasis is given to Zn intake levels that may lower the risk of vision loss and bone fracture associated with Cd exposure. The difficult challenge of determining a permissible intake level of Cd is discussed in relation to the recommended dietary Zn intake levels.


Assuntos
Cádmio , Zinco , Humanos , Cádmio/toxicidade , Cádmio/metabolismo , Zinco/metabolismo , Exposição Ambiental/efeitos adversos , Animais , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/genética , Metalotioneína/metabolismo
3.
Arch Orthop Trauma Surg ; 144(6): 2583-2590, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38691146

RESUMO

BACKGROUND: Cortical thickness and porosity are two main determinants of cortical bone strength. Thus, mapping variations in these parameters across the full width of the distal end of the clavicle may be helpful for better understanding the basis of distal clavicle fractures and for selecting optimal surgical treatment. METHODS: Distal ends of 11 clavicles (6 men, 5 women; age: 81.9 ± 15.1 years) were scanned by micro-computed tomography at 10-µm resolution. We first analyzed cortical thickness and porosity of each 500-µm-wide area across the superior surface of distal clavicle at the level of conoid tubercle in an antero-posterior direction. This level was chosen for detailed evaluation because previous studies have demonstrated its superior microarchitecture relative to the rest of the distal clavicle. Subsequently, we divided the full width of distal clavicle to three subregions (anterior, middle, and posterior) and analyzed cortical porosity, pore diameter, pore separation, and cortical thickness. RESULTS: We found the largest number of low-thickness and high-porosity areas in the anterior subregion. Cortical porosity, pore diameter, pore separation, and cortical thickness varied significantly among the three subregions (p < 0.001 p = 0.016, p = 0.001, p < 0.001, respectively). Cortex of the anterior subregion was more porous than that of the middle subregion (p < 0.001) and more porous and thinner than that of the posterior subregion (p < 0.001, p = 0.030, respectively). Interaction of site and sex revealed higher porosity of the anterior subregion in women (p < 0.001). The anterior subregion had larger pores than the middle subregion (p = 0.019), whereas the middle subregion had greater pore separation compared with the anterior (p = 0.002) and posterior subregions (p = 0.006). In general, compared with men, women had thinner (p < 0.001) and more porous cortex (p = 0.03) with larger cortical pores (p < 0.001). CONCLUSIONS: Due to high cortical porosity and low thickness, the anterior conoid subregion exhibits poor bone microarchitecture, particularly in women, which may be considered in clinical practice. LEVELS OF EVIDENCE: Level IV.


Assuntos
Clavícula , Fraturas Ósseas , Humanos , Clavícula/lesões , Clavícula/cirurgia , Clavícula/diagnóstico por imagem , Feminino , Masculino , Idoso , Fraturas Ósseas/cirurgia , Fraturas Ósseas/diagnóstico por imagem , Idoso de 80 Anos ou mais , Microtomografia por Raio-X , Osso Cortical/diagnóstico por imagem , Osso Cortical/cirurgia , Osso Cortical/anatomia & histologia , Porosidade , Pessoa de Meia-Idade , Cadáver
4.
Int J Mol Sci ; 25(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38339129

RESUMO

Cadmium (Cd) is an environmental toxicant of worldwide public health significance. Diet is the main non-workplace Cd exposure source other than passive and active smoking. The intestinal absorption of Cd involves transporters for essential metals, notably iron and zinc. These transporters determine the Cd body burden because only a minuscule amount of Cd can be excreted each day. The International Agency for Research on Cancer listed Cd as a human lung carcinogen, but the current evidence suggests that the effects of Cd on cancer risk extend beyond the lung. A two-year bioassay demonstrated that Cd caused neoplasms in multiple tissues of mice. Also, several non-tumorigenic human cells transformed to malignant cells when they were exposed to a sublethal dose of Cd for a prolonged time. Cd does not directly damage DNA, but it influences gene expression through interactions with essential metals and various proteins. The present review highlights the epidemiological studies that connect an enhanced risk of various neoplastic diseases to chronic exposure to environmental Cd. Special emphasis is given to the impact of body iron stores on the absorption of Cd, and its implications for breast cancer prevention in highly susceptible groups of women. Resistance to cell death and other cancer phenotypes acquired during Cd-induced cancer cell transformation, under in vitro conditions, are briefly discussed. The potential role for the ZnT1 efflux transporter in the cellular acquisition of tolerance to Cd cytotoxicity is highlighted.


Assuntos
Cádmio , Neoplasias , Feminino , Humanos , Animais , Camundongos , Cádmio/toxicidade , Cádmio/metabolismo , Carcinogênese , Zinco , Transformação Celular Neoplásica , Ferro , Neoplasias/induzido quimicamente
5.
Environ Toxicol ; 39(1): 156-171, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37676925

RESUMO

Heavy metals (HM) are believed to be injurious to humans. Man is exposed to them on daily basis unknowingly, with no acceptable protocol to manage its deleterious effects. These metals occur as mixture of chemicals with varying concentrations in our atmosphere. There are growing calls for the use of essential metals in mitigating the injurious effects induced by heavy metals exposure to man; therefore, the aim of this study was to evaluate the protective effects of essential metals (Zinc and Selenium) in a mixture of heavy metal toxicity. In this study, except for negative controls, all other groups were treated with lead (PbCl2 , 20 mg kg-1 ); cadmium (CdCl2 , 1.61 mg kg-1 ); mercury (HgCl2 , 0.40 mg kg-1 ), and arsenic (NaAsO3, 10 mg kg-1 ) that were formed in distilled water. Pb, Cd, As, and Hg were administered as mixtures to 35, 6 weeks old rats weighing between 80 to 100 g for 60 days. Group I served as normal control without treatment, group II positive control received HM mixture, while groups III to V received HMM with Zn, Se, and Zn + Se respectively. Animal and liver weights, HM accumulation in the liver, food intake (FI), water intake (WI), liver function test, malondialdehyde (MDA), and inflammatory/transcription factor/apoptosis markers were checked. Also, antioxidant enzymes, and histological studies were carried out. Metal mixture accumulated in the liver and caused toxicities which were ameliorated by Zn and Se administration. HM caused significant decrease in FI, WI and distorted the level of liver enzymes, lipid peroxidation, inflammatory markers, antioxidants and architecture of the liver. Co administration with Zn or Se or both reversed the distortions. This study lays credence to the evolving research on the public health implications of low dose metal mixtures and the possible ameliorative properties of Zn and Se.


Assuntos
Arsênio , Doença Hepática Induzida por Substâncias e Drogas , Mercúrio , Metais Pesados , Selênio , Humanos , Masculino , Ratos , Animais , Selênio/farmacologia , Selênio/uso terapêutico , Cádmio/toxicidade , Cádmio/metabolismo , Arsênio/toxicidade , Arsênio/metabolismo , Zinco/farmacologia , Zinco/uso terapêutico , Mercúrio/toxicidade , Chumbo/toxicidade , Oxidantes , Metais Pesados/toxicidade , Antioxidantes/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle
6.
Biol Trace Elem Res ; 202(2): 643-658, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37231320

RESUMO

Heavy metals (HM)in the environment have provoked global attention because of its deleterious effects. This study evaluated the protection offered by Zn or Se or both against HMM-induced alterations in the kidney. Male Sprague Dawley rats were distributed into 5 groups of 7 rats each. Group I served as normal control with unrestricted access to food and water. Group II received Cd, Pb, and As (HMM) per oral daily for 60 days while groups III and IV received HMM in addition to Zn and Se respectively for 60 days. Group V received both Zn and Se in addition to HMM for 60 days. Metal accumulation in feces was assayed at days 0, 30, and 60 while accumulation in the kidney and kidney weight were measured at day 60. Kidney function tests, NO, MDA, SOD, catalase, GSH, GPx, NO, IL-6, NF-Κb, TNFα, caspase 3, and histology were assessed. There is a significant increase in urea, creatinine, and bicarbonate ions while potassium ions decreased. There was significant increase in renal function biomarkers, MDA, NO, NF-Κb, TNFα, caspase 3, and IL-6 while SOD, catalase, GSH, and GPx decrease. Administration of HMM distorted the integrity of the rat kidney, and co-treatment with Zn or Se or both offered reasonable protection suggesting that Zn or Se could be used as an antidot against the deleterious effects of these metals.


Assuntos
Metais Pesados , Selênio , Ratos , Masculino , Animais , Catalase/metabolismo , Caspase 3/metabolismo , Selênio/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , NF-kappa B/metabolismo , Interleucina-6/metabolismo , Ratos Wistar , Ratos Sprague-Dawley , Metais Pesados/metabolismo , Rim/metabolismo , Zinco/farmacologia , Zinco/metabolismo , Superóxido Dismutase/metabolismo , Suplementos Nutricionais , Estresse Oxidativo , Cádmio/farmacologia
7.
Diagnostics (Basel) ; 13(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37998581

RESUMO

BACKGROUND: Eosinophilic esophagitis (EoE) is an immune-mediated esophageal disease with rising incidence. While proton pump inhibitors (PPIs) are the first-line treatment, a significant proportion of patients do not respond. This study aimed to determine if the EoE Histology Scoring System (EoEHSS) can predict PPI responsiveness. METHODS: A cross-sectional study was conducted on 89 pediatric patients diagnosed with EoE between 2016 and 2022. Patients were categorized into PPI responders (PPIREoE) and non-responders (PPINREoE) based on post-treatment biopsies. EoEHSS values from biopsies of the esophagus (distal, middle, and proximal segments) were compared between the two groups. RESULTS: No significant differences in EoEHSS scores were observed for the distal and proximal esophagus between the groups. However, the middle esophagus showed a significantly higher EoEHSS grade score in the PPINREoE group, indicating a more pronounced disease severity. Specific histological features, particularly eosinophilic abscesses and surface layering of the middle segment of the esophagus, were significantly different between the groups. CONCLUSIONS: Performing a biopsy of each esophageal segment, particularly the middle, is crucial for diagnostic precision and predicting PPI responsiveness. The EoEHSS can serve as a valuable tool in predicting therapy response, emphasizing the need for personalized therapeutic approaches in EoE management.

8.
J Trace Elem Med Biol ; 80: 127318, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37864919

RESUMO

BACKGROUND: Aluminum and nickel are potent neurotoxicants to which humans are constantly exposed. Previous studies have demonstrated that these two metals can affect the motor system, but their effects on the cerebellum, a central nervous system region with the highest number of neurons, have remained largely unexplored. Therefore, we conducted a study to investigate the adverse effects of Al, Ni, and Al+Ni in vivo. METHODS: In our study, seven male Sprague Dawley rats per group were orally exposed to deionized water, 0.2 mg/kg of Ni, 1 mg/kg of Al, and 0.2 mg/kg of Ni + 1 mg/kg of Al (as a binary heavy metals mixture; HMM), respectively. RESULTS: Ni, Al, and HMM exposed rats accumulated higher levels of Al and Ni compared to controls, and HMM treated animals had higher levels of Ca and Fe in the cerebellum (p < 0.05). Malondialdehyde (MDA) levels were significantly (p < 0.05) higher in the HMM, Ni, and Al treated groups compared to the control group that received deionized water. Superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and glutathione peroxidase (GPx) activities were significantly (p < 0.05) reduced in the HMM, Ni, and Al treated groups compared to the control group that received deionized water. Ni, Al, and HMM significantly (p < 0.05) shortened the length of time of the grip in comparison to the control. Nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) levels were significantly decreased in the nickel, Al, and heavy metal mixture groups compared with the control group. Moreover, there was a significant decrease in the activity of acetylcholinesterase (AChE) and a increase in cyclooxygenase-2 (COX-2) activity in the Ni, Al, and HMM treated groups compared to the control group. CONCLUSION: HMM exposed animals had significantly poorer performance in the Rotarod test (p < 0.05) than controls. Al and Ni induced impairment of cerebellar function at various levels.


Assuntos
Metais Pesados , Transtornos Motores , Humanos , Ratos , Masculino , Animais , Acetilcolinesterase/metabolismo , Níquel/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator de Crescimento Neural/metabolismo , Fator de Crescimento Neural/farmacologia , Estresse Oxidativo , Ratos Sprague-Dawley , Metais Pesados/farmacologia , Antioxidantes/metabolismo , Cerebelo/metabolismo , Catalase/metabolismo , Glutationa/metabolismo , Superóxido Dismutase/metabolismo , Água/farmacologia
9.
Curr Res Toxicol ; 5: 100129, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841055

RESUMO

This study evaluated nickel and aluminium-induced neurotoxicity, as a binary metal mixture. Twenty-eight male Sprague Dawley albino rats were weight-matched and divided into four groups. Group 1 (control) received deionized water. Group 2 and 3 received Aluminium (1 mg/kg) and Nickel (0.2 mg/kg) respectively, while Group 4 received Ni and Al mixture HMM three times a week orally for 90 days. Barnes maze tests was performed. Rats were sacrificed under pentobarbital anaesthesia, cerebral cortex and hippocampus were separated, and metal levels were measured using Atomic Absorption Spectroscopy (AAS). Malondialdehyde (MDA), catalase (CAT), glutathione content (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx), Brain Derived Neurotrophic Factor (BDNF), Nerve growth factor NGF, cyclo-oxygenase COX-2 and Acetylcholinesterase (AChE) were assayed using ELISA kits. Ni/Al binary mixture exposed rats showed a shorter latency period (though not significant) of 3.21 ± 1.40 s in comparison to 3.77 ± 1.11 (Ni only) and 3.99 ± 1.16(Al only). Ni/Al mixture gp had the lowest levels of Mg in both the hippocampus and frontal cortex when compared with the individual metals. In the hippocampus Al only exposed rats significantly showed p < 0.05 higher iron and Ca levels in comparison to Ni/Al mixture. Al alone significantly showed p < 0.05 lower levels of Fe but higher Ca than the Ni/Al mixture group. Exposure to Al only showed lower levels of BDNF in comparison to Ni/Al combination, whereas Ni/Al mixture gp had lower levels of NGF in comparison to the individual metals in the hippocampus. In the frontal cortex Ni only, group showed significantly lower BDNF in comparison to Ni/Al mixture whereas the mixture showed significantly lower NGF when compared with Al only group. There were higher levels of COX-2 in the Ni/Al mixture than individual metal treated rats in both hippocampus and frontal cortex. AChE levels in the Ni/Al mixture group was higher than Ni or Al only gps in the hippocampus whereas in the frontal cortex, Ni/Al exposed rats showed significantly lower AChE levels in comparison to Al only group. Ni, Al and Ni/Al mixture exhibited memory impairment by activation of oxidative stress, COX-2, and diminution of AChE, BDNF and NGF levels in cerebral cortex and hippocampus. The BDNF-COX-2 AChE signalling pathway may be involved in the neurotoxicity of Ni and Al.

12.
J Trace Elem Med Biol ; 79: 127263, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37499549

RESUMO

Iron deficiency, vitamin D deficiency and low calcium diet are frequent health problems with severe long- term consequences. Upon absorption from the duodenum, cadmium binds to transferrin, and cells with the highest density of transferrin receptor 1 (TfR1) take up the majority of the circulating cadmium. Nowadays, it is clear that individuals with iron deficiency anemia have increased blood levels of cadmium because of higher absorption rate, mediated by divalent metal transporter 1 (DMT1). However, the transient receptor potential vanilloid receptor 6 (TRPV6), known as a calcium carrier, is able to bind and transport cadmium as well. In the case of low calcium diet or vitamin D deficiency, TRPV6 may be overexpressed in the intestine and kidney tubules and absorbs (re-uptake in the case of renal tubules) cadmium in larger quantities, resulting in an increased cadmium blood levels. We speculate that the final event in the case of low calcium dietary diet and/or vitamin D deficiency is similar to what is observed in the case of iron deficiency, that cells with the highest levels of TfR1 (for example, megakaryocyte/erythrocyte progenitors and pro-erythroblasts) take up most of the circulating cadmium, which is powerful malignancy inductor, leading to appearance of acute myeloid leukemia (AML).


Assuntos
Anemia , Deficiências de Ferro , Leucemia Mieloide , Deficiência de Vitamina D , Humanos , Cádmio/metabolismo , Cálcio/metabolismo , Zinco/metabolismo , Ferro/metabolismo , Vitamina D , Transferrina , Vitaminas , Ingestão de Alimentos
15.
Biol Trace Elem Res ; 201(11): 5134-5142, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36757557

RESUMO

Human environment is highly contaminated with aluminum, and aluminum is toxic to majority of tissues, particularly to neurons. In previous decades, aluminum exposure was frequently linked with the onset of Alzheimer's disease (AD), and increased levels of Al were detected in the brains of individuals with AD. People who live in a certain area are exposed to aluminum in a similar way (they eat the same vegetable and other foodstuffs, use similar cosmetics, and buy medications from the same manufacturer), nevertheless not all of them develop Alzheimer's disease. Majority of known risk factors for AD promote atherosclerosis and consequently reduce brain blood supply. In this review, we highlighted the significance of local (carotid disease and atherosclerosis of intracranial blood vessels) and systemic hypoxia (chronic obstructive pulmonary disease and anemia) in the development of AD. Nerve tissue is very sophisticated and sensitive to hypoxia and aluminum toxicity. As a side effect of compensatory mechanisms in case of hypoxia, neurons start to uptake aluminum and iron to a greater extent. This makes perfect a background for the gradual onset and development of AD.


Assuntos
Doença de Alzheimer , Aterosclerose , Humanos , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Alumínio/toxicidade , Encéfalo , Ferro/uso terapêutico , Hipóxia , Aterosclerose/induzido quimicamente
16.
Chemosphere ; 313: 137296, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36410523

RESUMO

The tolerable aluminum (Al) intake levels for humans are constantly under review by regulatory agencies due to novel pre-clinical evidence on the neurotoxicity of prolonged Al exposure; however, little is known about the effects of Al on the spinal cord. This study aimed to investigate potential adverse effects on both spinal cord and systemic biochemical balance after prolonged exposure to a low dose of Al. Twenty adult rats were distributed in the control (distilled water) and exposed group (8.3 mg of AlCl3/kg/day). After 60 days, both blood and spinal cord samples were collected for oxidative stress and proteomic analyses. In plasma and erythrocytes, glutathione level was not different between groups; however, exposure to AlCl3 significantly decreased glutathione level in the spinal cord. Thiobarbituric acid reactive substances levels in the plasma and spinal cord of animals from the control group were significantly lower than those animals exposed to AlCl3. Exposure to AlCl3 significantly modulated the expression of proteins associated with the cell cycle, stimulus-response, cytoskeleton, nervous system regulation, protein activity, and synaptic signaling. Therefore, prolonged exposure to a low dose of Al triggered oxidative stress and proteomic changes that may affect spinal cord homeostasis.


Assuntos
Alumínio , Proteômica , Humanos , Ratos , Animais , Alumínio/metabolismo , Estresse Oxidativo , Antioxidantes/metabolismo , Glutationa/metabolismo , Medula Espinal/metabolismo
17.
Biol Trace Elem Res ; 201(7): 3210-3224, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36184718

RESUMO

This study aimed to identify the landscape of current aluminum toxicity based on knowledge mapping of the 100 most-cited articles on toxicological aspects of aluminum in biological organisms. The research was searched in the Web of Science Core Collection (WoS-CC) with publications between 1945 and 2022. Data regarding authorship, title, journal, year of publication, citation count, country, keywords, study design, and research hotspots were extracted and all elected articles were analyzed. Our results showed that among the articles selected, literature review and in vivo studies were the most common study designs. The USA and England were found as the countries with most publications. Alzheimer's disease (AD), aluminum, and neurotoxicity were found as the most frequent keywords. The articles most cited in world literature suggested that aluminum exposure is associated with Alzheimer's disease, Parkinson's disease (PD), dialysis encephalopathy, amyotrophic lateral sclerosis, neurodegeneration changes, cognitive impairment, such as bone damage, oxidative alterations, and cytotoxicity.


Assuntos
Doença de Alzheimer , Doença de Parkinson , Humanos , Bibliometria , Alumínio/toxicidade , Doença de Alzheimer/induzido quimicamente , Projetos de Pesquisa
18.
Toxicology ; 482: 153355, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36265524

RESUMO

Humans are exposed to cadmium via a variety of anthropogenic and natural pathways. Hypoxia, a key pathophysiological consequence of chronic obstructive pulmonary disease (COPD), as well as anemia, induce expression of many genes, including divalent metal transporter (DMT-1) , to induce cell adaptation to decreased pO2. DMT-1 then becomes increasingly expressed in a majority of organs, specifically the duodenum and the kidney. DMT-1 serves as an iron transporter; however, it can transport other physiologically important elements, including manganese (Mn2+) and zinc (Zn2+), as well as highly toxic divalent cations such as cadmium (Cd2+). Chronic obstructive pulmonary disease (COPD) is a highly prevalent, non-communicable disease in populations > 40 years of age, and is a leading cause of death worldwide. Occurrence of comorbidities accompanying COPD, such as chronic kidney disease (CKD) and osteoporosis increase the mortality rate and costs of treatment. As cadmium has been shown to be significantly osteo- and nephrotoxic, its hazardous effects could deteriorate bone microarchitecture and decrease kidney function positioning it as a likely environmental contributor to comorbidity development. In this review, we highlight the important contribution of hypoxia-induced DMT-1 expression mediating a cadmium (Cd2+) overload-induced CKD and osteoporosis axes. Furthermore, individuals who suffer from chronic lung disease with hypoxic respiratory failure, such as severe COPD appear to be significantly more sensitive to cadmium toxicity than healthy individuals.


Assuntos
Osteoporose , Doença Pulmonar Obstrutiva Crônica , Insuficiência Renal Crônica , Humanos , Cádmio/toxicidade , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Hipóxia , Osteoporose/epidemiologia
19.
Int J Mol Sci ; 23(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36293377

RESUMO

Hippocampus is the brain area where aluminum (Al) accumulates in abundance and is widely associated with learning and memory. In the present study, we evaluate behavioral, tissue, and proteomic changes in the hippocampus of Wistar rats caused by exposure to doses that mimic human consumption of aluminum chloride (AlCl3) in urban areas. For this, male Wistar rats were divided into two groups: Control (distilled water) and AlCl3 (8.3 mg/kg/day), both groups were exposed orally for 60 days. After the Al exposure protocol, cognitive functions were assessed by the Water maze test, followed by a collection for analysis of the global proteomic profile of the hippocampus by mass spectrometry. Aside from proteomic analysis, we performed a histological analysis of the hippocampus, to the determination of cell body density by cresyl violet staining in Cornu Ammonis fields (CA) 1 and 3, and hilus regions. Our results indicated that exposure to low doses of aluminum chloride triggered a decreased cognitive performance in learning and memory, being associated with the deregulation of proteins expression, mainly those related to the regulation of the cytoskeleton, cellular metabolism, mitochondrial activity, redox regulation, nervous system regulation, and synaptic signaling, reduced cell body density in CA1, CA3, and hilus.


Assuntos
Alumínio , Proteômica , Humanos , Ratos , Masculino , Animais , Alumínio/toxicidade , Alumínio/metabolismo , Cloreto de Alumínio/toxicidade , Ratos Wistar , Hipocampo/metabolismo , Compostos de Alumínio/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA