Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurobiol Dis ; 174: 105858, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36096339

RESUMO

Mutations in SPG11, encoding spatacsin, constitute the major cause of autosomal recessive Hereditary Spastic Paraplegia (HSP) with thinning of the corpus callosum. Previous studies showed that spatacsin orchestrates cellular traffic events through the formation of a coat-like complex and its loss of function results in lysosomal and axonal transport impairments. However, the upstream mechanisms that regulate spatacsin trafficking are unknown. Here, using proteomics and CRISPR/Cas9-mediated tagging of endogenous spatacsin, we identified a subset of 14-3-3 proteins as physiological interactors of spatacsin. The interaction is modulated by Protein Kinase A (PKA)-dependent phosphorylation of spatacsin at Ser1955, which initiates spatacsin trafficking from the plasma membrane to the intracellular space. Our study provides novel insight in understanding spatacsin physio-pathological roles with mechanistic dissection of its associated pathways.


Assuntos
Proteínas 14-3-3 , Paraplegia Espástica Hereditária , Humanos , Proteínas 14-3-3/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Paraplegia Espástica Hereditária/genética , Mutação , Corpo Caloso/patologia , Proteínas/genética
2.
Cells ; 10(8)2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34440835

RESUMO

Brain homeostasis needs continuous exchange of intercellular information among neurons, glial cells, and immune cells, namely microglial cells. Extracellular vesicles (EVs) are active players of this process. All the cells of the body, including the brain, release at least two subtypes of EVs, the medium/large EVs (m/lEVs) and small EVs (sEVs). sEVs released by microglia play an important role in brain patrolling in physio-pathological processes. One of the most common and malignant forms of brain cancer is glioblastoma. Altered intercellular communications constitute a base for the onset and the development of the disease. In this work, we used microglia-derived sEVs to assay their effects in vitro on murine glioma cells and in vivo in a glioma model on C57BL6/N mice. Our findings indicated that sEVs carry messages to cancer cells that modify glioma cell metabolism, reducing lactate, nitric oxide (NO), and glutamate (Glu) release. sEVs affect Glu homeostasis, increasing the expression of Glu transporter Glt-1 on astrocytes. We demonstrated that these effects are mediated by miR-124 contained in microglia-released sEVs. The in vivo benefit of microglia-derived sEVs results in a significantly reduced tumor mass and an increased survival of glioma-bearing mice, depending on miR-124.


Assuntos
Vesículas Extracelulares/metabolismo , Ácido Glutâmico/metabolismo , MicroRNAs/metabolismo , Microglia/metabolismo , Animais , Antagomirs/metabolismo , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Proliferação de Células , Células Cultivadas , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/metabolismo , Vesículas Extracelulares/transplante , Glioma/mortalidade , Glioma/patologia , Glioma/terapia , Interferon gama/farmacologia , Estimativa de Kaplan-Meier , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Microglia/citologia , Microglia/efeitos dos fármacos , Óxido Nítrico/metabolismo , Regulação para Cima
3.
Mol Neurodegener ; 11: 1, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26758690

RESUMO

BACKGROUND: Lrrk2, a gene linked to Parkinson's disease, encodes a large scaffolding protein with kinase and GTPase activities implicated in vesicle and cytoskeletal-related processes. At the presynaptic site, LRRK2 associates with synaptic vesicles through interaction with a panel of presynaptic proteins. RESULTS: Here, we show that LRRK2 kinase activity influences the dynamics of synaptic vesicle fusion. We therefore investigated whether LRRK2 phosphorylates component(s) of the exo/endocytosis machinery. We have previously observed that LRRK2 interacts with NSF, a hexameric AAA+ ATPase that couples ATP hydrolysis to the disassembling of SNARE proteins allowing them to enter another fusion cycle during synaptic exocytosis. Here, we demonstrate that NSF is a substrate of LRRK2 kinase activity. LRRK2 phosphorylates full-length NSF at threonine 645 in the ATP binding pocket of D2 domain. Functionally, NSF phosphorylated by LRRK2 displays enhanced ATPase activity and increased rate of SNARE complex disassembling. Substitution of threonine 645 with alanine abrogates LRRK2-mediated increased ATPase activity. CONCLUSIONS: Given that the most common Parkinson's disease LRRK2 G2019S mutation displays increased kinase activity, our results suggest that mutant LRRK2 may impair synaptic vesicle dynamics via aberrant phosphorylation of NSF.


Assuntos
Adenosina Trifosfatases/metabolismo , Mutação/genética , Proteínas Sensíveis a N-Etilmaleimida/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas SNARE/metabolismo , Animais , Proteínas de Transporte/metabolismo , Etilmaleimida/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Camundongos , Camundongos Transgênicos , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
4.
PLoS One ; 10(8): e0136769, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26317353

RESUMO

Human cell lines are often used to investigate cellular pathways relevant for physiological or pathological processes or to evaluate cell toxicity or protection induced by different compounds, including potential drugs. In this study, we analyzed and compared the differentiating activities of three agents (retinoic acid, staurosporine and 12-O-tetradecanoylphorbol-13-acetate) on the human neuroblastoma SH-SY5Y and BE(2)-M17 cell lines; the first cell line is largely used in the field of neuroscience, while the second is still poorly characterized. After evaluating their effects in terms of cell proliferation and morphology, we investigated their catecholaminergic properties by assessing the expression profiles of the major genes involved in catecholamine synthesis and storage and the cellular concentrations of the neurotransmitters dopamine and noradrenaline. Our results demonstrate that the two cell lines possess similar abilities to differentiate and acquire a neuron-like morphology. The most evident effects in SH-SY5Y cells were observed in the presence of staurosporine, while in BE(2)-M17 cells, retinoic acid induced the strongest effects. Undifferentiated SH-SY5Y and BE(2)-M17 cells are characterized by the production of both NA and DA, but their levels are considerably higher in BE(2)-M17 cells. Moreover, the NAergic phenotype appears to be more pronounced in SH-SY5Y cells, while BE(2)-M17 cells have a more prominent DAergic phenotype. Finally, the catecholamine concentration strongly increases upon differentiation induced by staurosporine in both cell lines. In conclusion, in this work the catecholaminergic phenotype of the human BE(2)-M17 cell line upon differentiation was characterized for the first time. Our data suggest that SH-SY5Y and BE(2)-M17 represent two alternative cell models for the neuroscience field.


Assuntos
Catecolaminas/biossíntese , Diferenciação Celular/efeitos dos fármacos , Neuroblastoma/metabolismo , Estaurosporina/farmacologia , Acetato de Tetradecanoilforbol/farmacologia , Tretinoína/farmacologia , Linhagem Celular Tumoral , Humanos , Neuroblastoma/patologia
5.
Chem Biol ; 21(7): 809-18, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-24981771

RESUMO

Ras of complex proteins (ROC) domains were identified in 2003 as GTP binding modules in large multidomain proteins from Dictyostelium discoideum. Research into the function of these domains exploded with their identification in a number of proteins linked to human disease, including leucine-rich repeat kinase 2 (LRRK2) and death-associated protein kinase 1 (DAPK1) in Parkinson's disease and cancer, respectively. This surge in research has resulted in a growing body of data revealing the role that ROC domains play in regulating protein function and signaling pathways. In this review, recent advances in the structural information available for proteins containing ROC domains, along with insights into enzymatic function and the integration of ROC domains as molecular switches in a cellular and organismal context, are explored.


Assuntos
Estrutura Terciária de Proteína , Proteínas/química , Proteínas/metabolismo , Animais , Sequência Conservada , Evolução Molecular , Humanos , Terapia de Alvo Molecular
6.
J Neurochem ; 131(2): 239-50, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24947832

RESUMO

Genetic studies show that LRRK2, and not its closest paralogue LRRK1, is linked to Parkinson's disease. To gain insight into the molecular and cellular basis of this discrepancy, we searched for LRRK1- and LRRK2-specific cellular processes by identifying their distinct interacting proteins. A protein microarray-based interaction screen was performed with recombinant 3xFlag-LRRK1 and 3xFlag-LRRK2 and, in parallel, co-immunoprecipitation followed by mass spectrometry was performed from SH-SY5Y neuroblastoma cell lines stably expressing 3xFlag-LRRK1 or 3xFlag-LRRK2. We identified a set of LRRK1- and LRRK2-specific as well as common interactors. One of our most prominent findings was that both screens pointed to epidermal growth factor receptor (EGF-R) as a LRRK1-specific interactor, while 14-3-3 proteins were LRRK2-specific. This is consistent with phosphosite mapping of LRRK1, revealing phosphosites outside of 14-3-3 consensus binding motifs. To assess the functional relevance of these interactions, SH-SY5Y-LRRK1 and -LRRK2 cell lines were treated with LRRK2 kinase inhibitors that disrupt 14-3-3 binding, or with EGF, an EGF-R agonist. Redistribution of LRRK2, not LRRK1, from diffuse cytoplasmic to filamentous aggregates was observed after inhibitor treatment. Similarly, EGF induced translocation of LRRK1, but not of LRRK2, to endosomes. Our study confirms that LRRK1 and LRRK2 can carry out distinct functions by interacting with different cellular proteins. LRRK1 and LRRK2 (leucine-rich repeat kinase) interaction partners were identified by two different protein-protein interaction screens. These confirmed epidermal growth factor receptor (EGR-R) as a LRRK1-specific interactor, while 14-3-3 proteins were LRRK2-specific. Functional analysis of these interactions and the pathways they mediate shows that LRRK1 and LRRK2 signaling do not intersect, reflective of the differential role of both LRRKs in Parkinson's disease.


Assuntos
Domínios e Motivos de Interação entre Proteínas/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Linhagem Celular Tumoral , Células HEK293 , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina
7.
Proc Natl Acad Sci U S A ; 111(7): 2626-31, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24510904

RESUMO

Mutations in leucine-rich repeat kinase 2 (LRRK2) cause inherited Parkinson disease (PD), and common variants around LRRK2 are a risk factor for sporadic PD. Using protein-protein interaction arrays, we identified BCL2-associated athanogene 5, Rab7L1 (RAB7, member RAS oncogene family-like 1), and Cyclin-G-associated kinase as binding partners of LRRK2. The latter two genes are candidate genes for risk for sporadic PD identified by genome-wide association studies. These proteins form a complex that promotes clearance of Golgi-derived vesicles through the autophagy-lysosome system both in vitro and in vivo. We propose that three different genes for PD have a common biological function. More generally, data integration from multiple unbiased screens can provide insight into human disease mechanisms.


Assuntos
Loci Gênicos/genética , Predisposição Genética para Doença/genética , Complexos Multiproteicos/metabolismo , Doença de Parkinson/enzimologia , Mapeamento de Interação de Proteínas/métodos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Análise de Variância , Western Blotting , Encéfalo/metabolismo , Fracionamento Celular , Primers do DNA/genética , Estudo de Associação Genômica Ampla/métodos , Complexo de Golgi/ultraestrutura , Células HEK293 , Humanos , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Espectrometria de Massas , Microscopia Confocal , Complexos Multiproteicos/genética , Plasmídeos/genética , Proteínas Serina-Treonina Quinases/genética , Vesículas Transportadoras/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
8.
FEBS J ; 281(1): 261-74, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24286120

RESUMO

The human ROCO proteins are a family of multi-domain proteins sharing a conserved ROC-COR supra-domain. The family has four members: leucine-rich repeat kinase 1 (LRRK1), leucine-rich repeat kinase 2 (LRRK2), death-associated protein kinase 1 (DAPK1) and malignant fibrous histiocytoma amplified sequences with leucine-rich tandem repeats 1 (MASL1). Previous studies of LRRK1/2 and DAPK1 have shown that the ROC (Ras of complex proteins) domain can bind and hydrolyse GTP, but the cellular consequences of this activity are still unclear. Here, the first biochemical characterization of MASL1 and the impact of GTP binding on MASL1 complex formation are reported. The results demonstrate that MASL1, similar to other ROCO proteins, can bind guanosine nucleotides via its ROC domain. Furthermore, MASL1 exists in two distinct cellular complexes associated with heat shock protein 60, and the formation of a low molecular weight pool of MASL1 is modulated by GTP binding. Finally, loss of GTP enhances MASL1 toxicity in cells. Taken together, these data point to a central role for the ROC/GTPase domain of MASL1 in the regulation of its cellular function.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Chaperonina 60/metabolismo , Proteínas de Ligação a DNA/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas Oncogênicas/metabolismo , Sobrevivência Celular , Citometria de Fluxo , Células HEK293 , Humanos , Técnicas Imunoenzimáticas , Imunoprecipitação , Transdução de Sinais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
9.
Glycobiology ; 23(5): 578-92, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23213111

RESUMO

A novel lectin was purified from the fruiting bodies of king bolete mushrooms (Boletus edulis, also called porcino, cep or penny bun). The lectin was structurally characterized i.e its amino acid sequence and three-dimensional structure were determined. The new protein is a homodimer and each protomer folds as ß-trefoil domain and therefore we propose the name Boletus edulis lectin (BEL) ß-trefoil to distinguish it from the other lectin that has been described in these mushrooms. The lectin has potent anti-proliferative effects on human cancer cells, which confers to it an interesting therapeutic potential as an antineoplastic agent. Several crystal forms of the apoprotein and of complexes with different carbohydrates were studied by X-ray diffraction. The structure of the apoprotein was solved at 1.12 Å resolution. The interaction of the lectin with lactose, galactose, N-acetylgalactosamine and T-antigen disaccharide, Galß1-3GalNAc, was examined in detail. All the three potential binding sites present in the ß-trefoil fold are occupied in at least one crystal form and are described in detail in this paper. No important conformational changes are observed in the lectin when comparing its co-crystals with carbohydrates with those of the ligand-free protein.


Assuntos
Antineoplásicos/química , Basidiomycota/química , Proteínas Fúngicas/química , Lectinas/química , Sequência de Aminoácidos , Antineoplásicos/farmacologia , Apoproteínas/química , Sítios de Ligação , Células CACO-2 , Carboidratos/química , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Proteínas Fúngicas/farmacologia , Células Hep G2 , Humanos , Lectinas/farmacologia , Células MCF-7 , Dados de Sequência Molecular , Estrutura Terciária de Proteína
10.
PLoS One ; 7(8): e43472, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22952686

RESUMO

Leucine-rich repeat kinase 1 and 2 (LRRK1 and LRRK2) are large multidomain proteins containing kinase, GTPase and multiple protein-protein interaction domains, but only mutations in LRRK2 are linked to familial Parkinson's disease (PD). Independent studies suggest that LRRK2 exists in the cell as a complex compatible with the size of a dimer. However, whether this complex is truly a homodimer or a heterologous complex formed by monomeric LRRK2 with other proteins has not been definitively proven due to the limitations in obtaining highly pure proteins suitable for structural characterization. Here, we used stable expression of LRRK1 and LRRK2 in HEK293T cell lines to produce recombinant LRRK1 and LRRK2 proteins of greater than 90% purity. Both purified LRRKs are folded, with a predominantly alpha-helical secondary structure and are capable of binding GTP with similar affinity. Furthermore, recombinant LRRK2 exhibits robust autophosphorylation activity, phosphorylation of model peptides in vitro and ATP binding. In contrast, LRRK1 does not display significant autophosphorylation activity and fails to phosphorylate LRRK2 model substrates, although it does bind ATP. Using these biochemically validated proteins, we show that LRRK1 and LRRK2 are capable of forming homodimers as shown by single-particle transmission electron microscopy and immunogold labeling. These LRRK dimers display an elongated conformation with a mean particle size of 145 Å and 175 Å respectively, which is disrupted by addition of 6M guanidinium chloride. Immunogold staining revealed double-labeled particles also in the pathological LRRK2 mutant G2019S and artificial mutants disrupting GTPase and kinase activities, suggesting that point mutations do not hinder the dimeric conformation. Overall, our findings indicate for the first time that purified and active LRRK1 and LRRK2 can form dimers in their full-length conformation.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Proteínas/química , Trifosfato de Adenosina/química , Cromatografia/métodos , Dicroísmo Circular , Dimerização , Células HEK293 , Humanos , Imuno-Histoquímica , Lentivirus/genética , Proteínas de Repetições Ricas em Leucina , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Microscopia Eletrônica de Transmissão/métodos , Microscopia de Fluorescência/métodos , Mutação , Fosforilação , Mutação Puntual , Ligação Proteica , Proteínas Serina-Treonina Quinases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA