Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13904, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886469

RESUMO

Prussian Blue Analogues (PBAs), which are characterized by their open structure, high stability, and non-toxic properties, have recently been the subject of research for various applications, including their use as electrode precursors for capacitive deionization, gas storage, and environmental purification. These materials can be readily tailored to enhance their affinity towards gases for integration with sensing devices. An improved understanding of PBA-gas interactions is expected to enhance material development and existing sensor deposition schemes greatly. The use of inverse gas chromatography (IGC) is a robust approach for examining the relationship between porous materials and gases. In this study, the adsorption properties of (functionalized) hydrocarbons, i.e., probe molecules, on the copper hexacyanoferrate (CuHCF) lattice were studied via IGC, demonstrating that alkylbenzenes have a higher affinity for this material than n-alkanes. This difference was rationalized by steric hindrance, π-π interactions, and vapour pressure effects. Along the same line, the five isomers of hexane showed decreasing selectivity upon increased steric hindrance. Enthalpy values for n-pentane, n-hexane and n-heptane were lower than that of toluene. The introduction of increased probe masses resulted in a surface coverage of 46% for toluene. For all n-alkane probe molecules this percentage was lower. However, the isotherms of these probes did not show saturation points and the observed linear regime proves beneficial for gas sensing. Our work demonstrates the versatility of CuHCF for gas sensing purposes and the potential of IGC to characterize the adsorption characteristics of such a porous nanomaterial.

2.
J Am Soc Mass Spectrom ; 31(2): 249-256, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32031404

RESUMO

Identification and confirmation of known as well as unknown (bio)chemical entities in ambient mass spectrometry (MS) and MS imaging (MSI) mostly involve accurate mass determination, often in combination with MS/MS or MSn work flows. To further improve structural assignment, additional molecular information is required. Here we present an ambient hydrogen/deuterium exchange (HDX) laser ablation electrospray ionization (LAESI) MS method in which, apart from the accurate mass and MS/MS data, the number of exchangeable protons in (un)known molecules is obtained. While eventually presenting ambient HDX-LAESI-MSI, samples were not preincubated with deuterated solvents, but instead HDX occurred following fusion of ablated sample material with microdroplets generated by ESI of deuterated solvents. Therefore, the degree of HDX was first studied following ablation of nondeuterated sample solutions of melamine and monosaccharides. From these experiments, it was concluded that the set-up used could provide meaningful HDX data in support of molecular structure elucidation by significantly reducing the number of structure options from a measured elemental composition. This reduction was demonstrated with an unknown accurate m/z value obtained in the analysis of an orange slice, reducing the possible number of molecular structures having the same elemental composition by 87% due to the number of H/D exchanges observed. Next, deuterated and nondeuterated MS/MS experiments showed the number of exchangeable protons in the substructures from deuterated neutral losses in the product ion spectra, confirming the compound to be arginine. Finally, the potential of ambient HDX-LAESI-MSI was demonstrated by the imaging of (secondary) plant metabolites in a Phalaenopsis petal.


Assuntos
Medição da Troca de Deutério/métodos , Monossacarídeos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Triazinas/química , Hidrogênio/química , Terapia a Laser , Prótons , Espectrometria de Massas em Tandem/métodos
3.
J Chromatogr A ; 1178(1-2): 43-55, 2008 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-18062980

RESUMO

An improved comprehensive two-dimensional (LC x LC) HPLC system for the analysis of triacylglycerols was developed. In the first-dimension, a Ag(I)-coated cation exchanger (250 mm x 2.1 mm, 5 microm) was employed with a gradient from 100% MeOH to 6% MeCN in MeOH at 20 microL/min. Using a 10-way valve with two switching loops, 1 min sections of the first-dimension were introduced in the second-dimension consisting of a 30 mm x 4.6 mm C18 (1.8 microm) column with an isocratic mobile phase of methanol-methyl tert-butyl ether (70:30) at 3.0 mL/min. As the second-dimension solvent was stronger than the first-dimension solvent, focusing in the second-dimension took place, leading to better separations than in previously reported analyses in which hexane was the main constituent of the first-dimension eluent. Compounds differing by 2 in their partition number were baseline separated in the second-dimension. Detection took place by UV at 210 nm, evaporative light scattering and (+)-atmospheric pressure chemical ionisation-MS with the latter giving the best results. Corn oil was investigated and 44 compounds could be detected: 34 triacylglycerols (TAGs), 8 oxygenated TAGs, and 2 TAGs containing a trans double bond. Data manipulation allowed the construction of contour plots and the automated calculation of the first- and second-dimension retention times and peak areas. Quantitative results are compared with a fatty acid methyl ester analysis, and with literature data.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Óleo de Milho/análise , Espectrometria de Massas/métodos , Triglicerídeos/análise , Óleo de Milho/isolamento & purificação , Luz , Espalhamento de Radiação , Triglicerídeos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA