Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 327(4): E441-E448, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39140975

RESUMO

Besides the well-recognized influence of maternal health on fetal in utero development, recent epidemiological studies appoint paternal preconception metabolic health as a significant factor in shaping fetal metabolic programming and subsequently offspring metabolic health; however, mechanisms behind these adaptations remain confined to animal models. To elucidate the effects of paternal obesity (P-OB) on infant metabolism in humans, we examined mesenchymal stem cells (MSCs), which give rise to infant tissue, remain involved in mature tissue maintenance, and resemble the phenotype of the offspring donor. Here, we assessed mitochondrial functional capacity, content, and insulin action in MSC from infants of fathers with overweight [body mass index (BMI: 25-30 kg/m2); paternal overweight (P-OW)] or obesity (BMI ≥ 30 kg/m2; P-OB) while controlling for maternal intrauterine environment. Compared with P-OW, infant MSCs in the P-OB group had lower intact cell respiration, OXPHOS, and electron transport system capacity, independent of any changes in mitochondrial content. Furthermore, glucose handling, insulin action, lipid content, and oxidation were similar between groups. Importantly, infants in the P-OB group had a greater weight-to-length ratio, which could be in part due to changes in MSC metabolic functioning, which precedes and, therefore, influences infant growth trajectories. These data suggest that P-OB negatively influences infant MSC mitochondria. ClinicalTrials.gov Identifier: NCT03838146.NEW & NOTEWORTHY Paternal obesity decreases infant mesenchymal stem cell (MSC) basal and maximal respiration. Lower OXPHOS and electron transport system capacity could be explained by lower complex I and IV respiratory capacity but not changes in OXPHOS expression in infant MSC from fathers with obesity. Paternal obesity and altered MSC mitochondrial functional capacity are associated with a greater infant weight-to-length ratio at birth.


Assuntos
Pai , Células-Tronco Mesenquimais , Mitocôndrias , Obesidade , Adulto , Humanos , Lactente , Recém-Nascido , Masculino , Gravidez , Células-Tronco Mesenquimais/metabolismo , Mitocôndrias/metabolismo , Obesidade/metabolismo , Fosforilação Oxidativa
2.
Physiol Rep ; 12(9): e16028, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38684442

RESUMO

Maternal exercise (ME) has been established as a useful non-pharmacological intervention to improve infant metabolic health; however, mechanistic insight behind these adaptations remains mostly confined to animal models. Infant mesenchymal stem cells (MSCs) give rise to infant tissues (e.g., skeletal muscle), and remain involved in mature tissue maintenance. Importantly, these cells maintain metabolic characteristics of an offspring donor and provide a model for the investigation of mechanisms behind infant metabolic health improvements. We used undifferentiated MSC to investigate if ME affects infant MSC mitochondrial function and insulin action, and if these adaptations are associated with lower infant adiposity. We found that infants from exercising mothers have improvements in MSC insulin signaling related to higher MSC respiration and fat oxidation, and expression and activation of energy-sensing and redox-sensitive proteins. Further, we found that infants exposed to exercise in utero were leaner at 1 month of age, with a significant inverse correlation between infant MSC respiration and infant adiposity at 6 months of age. These data suggest that infants from exercising mothers are relatively leaner, and this is associated with higher infant MSC mitochondrial respiration, fat use, and insulin action.


Assuntos
Composição Corporal , Exercício Físico , Insulina , Células-Tronco Mesenquimais , Mitocôndrias , Humanos , Feminino , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Exercício Físico/fisiologia , Mitocôndrias/metabolismo , Insulina/metabolismo , Lactente , Gravidez , Masculino , Composição Corporal/fisiologia , Adulto , Recém-Nascido , Adiposidade/fisiologia
3.
Obesity (Silver Spring) ; 31(9): 2349-2358, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37551412

RESUMO

OBJECTIVE: In adults, skeletal muscle insulin sensitivity (SI ) and fatty acid oxidation (FAO) are linked with a predisposition to obesity. The current study aimed to determine the effects of maternal exercise on a model of infant skeletal muscle tissue (differentiated umbilical cord mesenchymal stem cells [MSCs]) SI and FAO and analyzed for associations with infant body composition. METHODS: Females <16 weeks' gestation were randomized to either 150 min/wk of moderate-intensity aerobic, resistance, or combination exercise or a nonexercising control. At delivery, MSCs were isolated from umbilical cords and myogenically differentiated, and SI and FAO were measured using radiolabeled substrates. Infant body fat percentage (BF%) and fat-free mass were calculated using standard equations at 1 and 6 months of age. RESULTS: MSCs from infants of all exercisers had significantly (p < 0.05) higher SI . MSC SI was inversely associated with infant BF% at 1 (r = -0.38, p < 0.05) and 6 (r = -0.65, p < 0.01) months of age. Infants with high SI had lower BF% at 1 (p = 0.06) and 6 (p < 0.01) months of age. MSCs in the high SI group had higher (p < 0.05) FAO. CONCLUSIONS: Exposure to any type of exercise in utero improves offspring SI and could reduce adiposity in early infancy.


Assuntos
Resistência à Insulina , Células-Tronco Mesenquimais , Feminino , Humanos , Lactente , Adiposidade , Composição Corporal , Células-Tronco Mesenquimais/metabolismo , Obesidade/metabolismo
4.
J Appl Physiol (1985) ; 135(2): 302-315, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37318985

RESUMO

We assessed the feasibility of the Molecular Transducers of Physical Activity Consortium (MoTrPAC) human adult clinical exercise protocols, while also documenting select cardiovascular, metabolic, and molecular responses to these protocols. After phenotyping and familiarization sessions, 20 subjects (25 ± 2 yr, 12 M, 8 W) completed an endurance exercise bout (n = 8, 40 min cycling at 70% V̇o2max), a resistance exercise bout (n = 6, ∼45 min, 3 sets of ∼10 repetition maximum, 8 exercises), or a resting control period (n = 6, 40 min rest). Blood samples were taken before, during, and after (10 min, 2 h, and 3.5 h) exercise or rest for levels of catecholamines, cortisol, glucagon, insulin, glucose, free fatty acids, and lactate. Heart rate was recorded throughout exercise (or rest). Skeletal muscle (vastus lateralis) and adipose (periumbilical) biopsies were taken before and ∼4 h following exercise or rest for mRNA levels of genes related to energy metabolism, growth, angiogenesis, and circadian processes. Coordination of the timing of procedural components (e.g., local anesthetic delivery, biopsy incisions, tumescent delivery, intravenous line flushes, sample collection and processing, exercise transitions, and team dynamics) was reasonable to orchestrate while considering subject burden and scientific objectives. The cardiovascular and metabolic alterations reflected a dynamic and unique response to endurance and resistance exercise, whereas skeletal muscle was transcriptionally more responsive than adipose 4 h postexercise. In summary, the current report provides the first evidence of protocol execution and feasibility of key components of the MoTrPAC human adult clinical exercise protocols. Scientists should consider designing exercise studies in various populations to interface with the MoTrPAC protocols and DataHub.NEW & NOTEWORTHY This study highlights the feasibility of key aspects of the MoTrPAC adult human clinical protocols. This initial preview of what can be expected from acute exercise trial data from MoTrPAC provides an impetus for scientists to design exercise studies to interlace with the rich phenotypic and -omics data that will populate the MoTrPAC DataHub at the completion of the parent protocol.


Assuntos
Exercício Físico , Músculo Esquelético , Adulto , Humanos , Estudos de Viabilidade , Exercício Físico/fisiologia , Músculo Esquelético/fisiologia , Músculo Quadríceps/metabolismo , Metabolismo Energético
5.
J Appl Physiol (1985) ; 134(5): 1312-1320, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37055039

RESUMO

Type 2 diabetes is more prevalent in African American (AA) than Caucasian (C) adults. Furthermore, differential substrate utilization has been observed between AA and C adults, but data regarding metabolic differences between races at birth remains scarce. The purpose of the present study was to determine if there are racial differences in substrate metabolism evident at birth using a mesenchymal stem cells (MSCs) collected from offspring umbilical cords. Using radio-labeled tracers, MSCs from offspring of AA and C mothers were tested for glucose and fatty acid metabolism in the undifferentiated state and while undergoing myogenesis in vitro. Undifferentiated MSCs from AA exhibited greater partitioning of glucose toward nonoxidized glucose metabolites. In the myogenic state, AA displayed higher glucose oxidation, but similar fatty acid oxidation rates. In the presence of both glucose and palmitate, but not palmitate only, AA exhibit a higher rate of incomplete fatty acid oxidation evident by a greater production of acid-soluble metabolites. Myogenic differentiation of MSCs elicits an increase in glucose oxidation in AA, but not in C. Together, these data suggest that metabolic differences between AA and C races exist at birth.NEW & NOTEWORTHY African Americans, when compared with Caucasians, display greater insulin resistance in skeletal muscle. Differences in substrate utilization have been proposed as a factor for this health disparity; however, it remains unknown how early these differences manifest. Using infant umbilical cord-derived mesenchymal stem cells, we tested for in vitro glucose and fatty acid oxidation differences. Myogenically differentiated MSCs from African American offspring display higher rates of glucose oxidation and incomplete fatty acid oxidation.


Assuntos
Diabetes Mellitus Tipo 2 , Células-Tronco Mesenquimais , Adulto , Humanos , Lactente , Recém-Nascido , Negro ou Afro-Americano , Diabetes Mellitus Tipo 2/metabolismo , Ácidos Graxos/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Células-Tronco Mesenquimais/metabolismo , População Branca
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA