Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 118: 99-107, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28964886

RESUMO

Peritrichs are a major group of ciliates with worldwide distribution, and they play important roles in many habitats. Intrafamilial phylogeny of some peritrichs was investigated using information from three genes, which provided more robust interpretations than single-gene analyses. Sixty-seven new sequences including SSU rDNA, ITS1-5.8S-ITS2 and LSU rDNA were aligned with available sequences in GenBank to infer phylogenetic relationships within the families Zoothamniidae and Epistylididae. Results reveal the following relationships: (1) Epistylididae is polyphyletic, consisting of two clades that nest within the Zoothamniidae as part of the crown clade of peritrichs (order Vorticellida) and a third one that is part of the basal clade of peritrichs (order Opercularida); (2) Epistylis elongata falls within one of the clades of Zoothamnium rather than with congeners; (3) Zoothamnium is probably paraphyletic, consisting of three divergent clades, with the genera Myoschiston and Zoothamnopsis intermingled with species of Zoothamnium. The following evolutionary hypotheses can be inferred from these results: (1) the contractile stalk of Zoothamnium is plesiomorphic. (2) Myoschiston, Zoothamnopsis and clade II of Epistylididae are derived from the Zoothamnium morphotype by partial or incomplete development of the spasmoneme that forms the contractile center of the stalk around which the rigid cortex is secreted. (3) Clade I of the Epistylididae, which are primarily colonial forms that appear never to have evolved a spasmoneme of any sort, may represent the ancestral morphotype of peritrichs.


Assuntos
Cilióforos/classificação , Fases de Leitura Aberta/genética , Filogenia , RNA Ribossômico/genética , Sequência de Bases , China , Cilióforos/genética , DNA de Protozoário/genética , DNA Ribossômico/genética , Geografia , Funções Verossimilhança , Subunidades Ribossômicas Menores/genética , Especificidade da Espécie
2.
J Morphol ; 272(8): 987-1006, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21618585

RESUMO

The process of stomatogenesis in peritrich ciliates is still incompletely understood. Previous studies on the stomatogenesis of four species of peritrichs, Telotrochidium sp., Carchesium polypinum, Opercularia coarctata, and Astylozoon pyriforme conflict with one another in some cases and omit details of events in others. We described the entire process of stomatogenesis in the peritrich ciliate Campanella umbellaria (C. umbellaria) using an improved method of staining with protargol. Our results disagree with some previous studies with regard to the formation of some rudimentary structures, reorganization of the parental haplokinety, formation of new germinal rows, and separation of daughter oral complexes. The pattern of stomatogenesis characteristic of peritrichs is compared to the stomatogenetic patterns of three other oligohymenophorean subclasses and a hypothesis about the evolution of stomatogenesis in the class Oligohymenophorea is offered. Details of stomatogenesis need to be described and verified in a greater variety of peritrichs to clarify possible differences between taxa and make it possible to relate stomatogenesis to evolution within the subclass Peritrichia. Ultrastructural studies are the next step in description of morphogenetic processes in peritrichs, and characteristics of C. umbellaria make it a useful model for this work.


Assuntos
Oligoimenóforos/citologia , Evolução Biológica , Modelos Animais , Modelos Biológicos , Morfogênese , Boca/anatomia & histologia , Oligoimenóforos/classificação , Oligoimenóforos/crescimento & desenvolvimento , Filogenia , Proteínas de Prata/análise
3.
J Eukaryot Microbiol ; 57(6): 483-93, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20796132

RESUMO

The marine scuticociliate Paratetrahymena parawassi n. sp. is described on the basis of morphology, especially infraciliature, and the sequence of its small subunit (SSU) rRNA gene to become the second known member of its genus. Paratetrahymena and other ciliates in the order Loxocephalida possess a mixture of morphological and morphogenetic features characteristic of the subclasses Hymenostomatia and Scuticociliatia. Accordingly, we used SSU rRNA sequences to analyze the phylogeny of Paratetrahymena and three other loxocephalid genera. Paratetrahymena and Cardiostomatella vermiformis formed a moderately well-supported clade that diverged at a deep level from all other scuticociliates, supporting separation of loxocephalids from other scuticociliates as a suprafamilial taxon. Sathrophilus holtae was a sister taxon to Paratetrahymena and Cardiostomatella in a poorly supported, unresolved relationship; nevertheless, association of all three genera into a single clade was supported by an approximately unbiased (AU) test. Any association of these genera singly or as a group with the Hymenostomatia was rejected decisively by AU tests and by a complete absence in the loxocephalids of the unique nucleotide identities that distinguish hymenostomes. Therefore, the morphological and morphogenetic similarities of loxocephalids to hymenostomes may be plesiomorphies, and the conflicting mix of scuticociliate and hymenostome characteristics seen in loxocephalids may result from differing rates of character evolution. Dexiotrichides pangi and Urocentrum, which is currently classified as a peniculid, formed a small clade that associated with hymenostomes and peritrichs. Monophyly of the Loxocephalida with Dexiotrichides and/or Urocentrum included was not rejected by AU; however, inclusion of Urocentrum in the Peniculia was rejected by AU tests. A hypothesis is offered to explain the lack of resolution of loxocephalid ciliates and Urocentrum in phylogenetic trees, namely that their phylogenetic positions are influenced by a combination of heterogeneous data and long-branch attraction caused by poor representation of taxa in analyses. The well-known genus Cyclidium, a member of the order Pleuronematida, was revealed to be polyphyletic as a byproduct of our analyses of loxocephalids. In particular, Cyclidium porcatum appears to fall outside the clade containing typical members of the subclass Scuticociliatia and thus invites investigation as a possible member of the order Loxocephalida.


Assuntos
Oligoimenóforos/classificação , Oligoimenóforos/citologia , Filogenia , Sequência de Bases , China , Análise por Conglomerados , DNA de Protozoário/química , DNA de Protozoário/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Genes de RNAr , Sedimentos Geológicos/parasitologia , Microscopia , Dados de Sequência Molecular , Oligoimenóforos/genética , Oligoimenóforos/isolamento & purificação , RNA de Protozoário/genética , RNA Ribossômico 18S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA