Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Metab ; 84: 101938, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631478

RESUMO

OBJECTIVE: The peroxisome proliferator-activated receptor α (PPARα) is a transcription factor driving target genes involved in fatty acid ß-oxidation. To what extent various PPARα interacting proteins may assist its function as a transcription factor is incompletely understood. An ORFeome-wide unbiased mammalian protein-protein interaction trap (MAPPIT) using PPARα as bait revealed a PPARα-ligand-dependent interaction with the orphan nuclear receptor estrogen-related receptor α (ERRα). The goal of this study was to characterize the nature of the interaction in depth and to explore whether it was of physiological relevance. METHODS: We used orthogonal protein-protein interaction assays and pharmacological inhibitors of ERRα in various systems to confirm a functional interaction and study the impact of crosstalk mechanisms. To characterize the interaction surfaces and contact points we applied a random mutagenesis screen and structural overlays. We pinpointed the extent of reciprocal ligand effects of both nuclear receptors via coregulator peptide recruitment assays. On PPARα targets revealed from a genome-wide transcriptome analysis, we performed an ERRα chromatin immunoprecipitation analysis on both fast and fed mouse livers. RESULTS: Random mutagenesis scanning of PPARα's ligand-binding domain and coregulator profiling experiments supported the involvement of (a) bridging coregulator(s), while recapitulation of the interaction in vitro indicated the possibility of a trimeric interaction with RXRα. The PPARα·ERRα interaction depends on 3 C-terminal residues within helix 12 of ERRα and is strengthened by both PGC1α and serum deprivation. Pharmacological inhibition of ERRα decreased the interaction of ERRα to ligand-activated PPARα and revealed a transcriptome in line with enhanced mRNA expression of prototypical PPARα target genes, suggesting a role for ERRα as a transcriptional repressor. Strikingly, on other PPARα targets, including the isolated PDK4 enhancer, ERRα behaved oppositely. Chromatin immunoprecipitation analyses demonstrate a PPARα ligand-dependent ERRα recruitment onto chromatin at PPARα-binding regions, which is lost following ERRα inhibition in fed mouse livers. CONCLUSIONS: Our data support the coexistence of multiple layers of transcriptional crosstalk mechanisms between PPARα and ERRα, which may serve to finetune the activity of PPARα as a nutrient-sensing transcription factor.


Assuntos
Receptor ERRalfa Relacionado ao Estrogênio , PPAR alfa , Receptores de Estrogênio , PPAR alfa/metabolismo , PPAR alfa/genética , Animais , Camundongos , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/genética , Humanos , Regulação da Expressão Gênica , Células HEK293 , Masculino , Camundongos Endogâmicos C57BL , Ligação Proteica , Fígado/metabolismo
2.
Trends Biochem Sci ; 49(5): 431-444, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38429217

RESUMO

The glucocorticoid receptor (GR) is a major nuclear receptor (NR) drug target for the treatment of inflammatory disorders and several cancers. Despite the effectiveness of GR ligands, their systemic action triggers a plethora of side effects, limiting long-term use. Here, we discuss new concepts of and insights into GR mechanisms of action to assist in the identification of routes toward enhanced therapeutic benefits. We zoom in on the communication between different GR domains and how this is influenced by different ligands. We detail findings on the interaction between GR and chromatin, and highlight how condensate formation and coregulator confinement can perturb GR transcriptional responses. Last, we discuss the potential of novel ligands and the therapeutic exploitation of crosstalk with other NRs.


Assuntos
Receptores de Glucocorticoides , Transdução de Sinais , Receptores de Glucocorticoides/metabolismo , Humanos , Transdução de Sinais/efeitos dos fármacos , Animais , Cromatina/metabolismo , Ligantes
3.
Cell Mol Life Sci ; 80(9): 249, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37578563

RESUMO

The glucocorticoid receptor (GR) is a crucial drug target in multiple myeloma as its activation with glucocorticoids effectively triggers myeloma cell death. However, as high-dose glucocorticoids are also associated with deleterious side effects, novel approaches are urgently needed to improve GR action in myeloma. Here, we reveal a functional crosstalk between GR and the mineralocorticoid receptor (MR) that plays a role in improved myeloma cell killing. We show that the GR agonist dexamethasone (Dex) downregulates MR levels in a GR-dependent way in myeloma cells. Co-treatment of Dex with the MR antagonist spironolactone (Spi) enhances Dex-induced cell killing in primary, newly diagnosed GC-sensitive myeloma cells. In a relapsed GC-resistant setting, Spi alone induces distinct myeloma cell killing. On a mechanistic level, we find that a GR-MR crosstalk likely arises from an endogenous interaction between GR and MR in myeloma cells. Quantitative dimerization assays show that Spi reduces Dex-induced GR-MR heterodimerization and completely abolishes Dex-induced MR-MR homodimerization, while leaving GR-GR homodimerization intact. Unbiased transcriptomics analyses reveal that c-myc and many of its target genes are downregulated most by combined Dex-Spi treatment. Proteomics analyses further identify that several metabolic hallmarks are modulated most by this combination treatment. Finally, we identified a subset of Dex-Spi downregulated genes and proteins that may predict prognosis in the CoMMpass myeloma patient cohort. Our study demonstrates that GR-MR crosstalk is therapeutically relevant in myeloma as it provides novel strategies for glucocorticoid-based dose-reduction.


Assuntos
Glucocorticoides , Mieloma Múltiplo , Humanos , Glucocorticoides/farmacologia , Receptores de Mineralocorticoides/genética , Dexametasona/farmacologia , Dexametasona/metabolismo , Dexametasona/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Espironolactona/uso terapêutico
4.
J Med Chem ; 66(12): 7698-7729, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37276138

RESUMO

Histone deacetylases (HDACs) are enzymes pursued as drug targets in various cancers and several non-oncological conditions, such as inflammation and neurodegenerative disorders. In the past decade, HDAC inhibitors (HDACi) have emerged as relevant pharmaceuticals, with many efforts devoted to the development of new representatives. However, the growing safety concerns regarding the established hydroxamic acid-based HDAC inhibitors tend to drive current research more toward the design of inhibitors bearing alternative zinc-binding groups (ZBGs). This Perspective presents an overview of all non-hydroxamic acid ZBGs that have been incorporated into the clinically approved prototypical HDACi, suberoylanilide hydroxamic acid (vorinostat). This provides the unique opportunity to compare the inhibition potential and biological effects of different ZBGs in a direct way, as the compounds selected for this Perspective differ only in their ZBG. To that end, different strategies used to select a ZBG, its properties, activity, and liabilities are discussed.


Assuntos
Inibidores de Histona Desacetilases , Ácidos Hidroxâmicos , Vorinostat/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/química , Histona Desacetilases/química , Zinco/química
5.
Chem Commun (Camb) ; 58(42): 6239-6242, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35510683

RESUMO

Non-selective inhibition of different histone deacetylase enzymes by hydroxamic acid-based drugs causes severe side effects when used as a (long-term) cancer treatment. In this work, we searched for a potent zinc-binding group able to replace the contested hydroxamic acid by employing a lean inhibitor strategy. This instructed the synthesis of a set of HDAC6-selective inhibitors containing the more desirable mercaptoacetamide moiety. Biological evaluation of these new compounds showed an IC50 in the nanomolar range, dose-dependent HDAC6 inhibition in MM1.S cells and improved genotoxicity results, rendering these new inhibitors valuable hits for applications even beyond oncology.


Assuntos
Inibidores de Histona Desacetilases , Ácidos Hidroxâmicos , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/farmacologia
8.
Biochim Biophys Acta Rev Cancer ; 1874(2): 188430, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32950642

RESUMO

Glucocorticoids are essential drugs in the treatment protocols of lymphoid malignancies. These steroidal hormones trigger apoptosis of the malignant cells by binding to the glucocorticoid receptor (GR), which is a member of the nuclear receptor superfamily. Long term glucocorticoid treatment is limited by two major problems: the development of glucocorticoid-related side effects, which hampers patient quality of life, and the emergence of glucocorticoid resistance, which is a gradual process that is inevitable in many patients. This emphasizes the need to reevaluate and optimize the widespread use of glucocorticoids in lymphoid malignancies. To achieve this goal, a deep understanding of the mechanisms governing glucocorticoid responsiveness is required, yet, a recent comprehensive overview is currently lacking. In this review, we examine how glucocorticoids mediate apoptosis by detailing GR's genomic and non-genomic action mechanisms in lymphoid malignancies. We continue with a discussion of the glucocorticoid-related problems and how these are intertwined with one another. We further zoom in on glucocorticoid resistance by critically analyzing the plethora of proposed mechanisms and highlighting therapeutic opportunities that emerge from these studies. In conclusion, early detection of glucocorticoid resistance in patients remains an important challenge as this would result in a timelier treatment reorientation and reduced glucocorticoid-instigated side effects.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Glucocorticoides/farmacologia , Transtornos Linfoproliferativos/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glucocorticoides/uso terapêutico , Humanos , Transtornos Linfoproliferativos/metabolismo , Qualidade de Vida , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
PLoS One ; 13(5): e0197000, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29738549

RESUMO

Glucocorticoids (GCs) are a cornerstone in the treatment of lymphoid malignancies such as multiple myeloma (MM) and acute lymphoblastic leukemia (ALL). Yet, prolonged GC use is hampered by deleterious GC-related side effects and the emergence of GC resistance. To tackle and overcome these GC-related problems, the applicability of selective glucocorticoid receptor agonists and modulators was studied, in search of fewer side-effects and at least equal therapeutic efficacy as classic GCs. Compound A (CpdA) is a prototypical example of such a selective glucocorticoid receptor modulator and does not support GR-mediated transactivation. Here, we examined whether the combination of CpdA with the classic GC dexamethasone (Dex) may improve GC responsiveness of MM and ALL cell lines. We find that the combination of Dex and CpdA does not substantially enhance GC-mediated cell killing. In line, several apoptosis hallmarks, such as caspase 3/7 activity, PARP cleavage and the levels of cleaved-caspase 3 remain unchanged upon combining Dex with CpdA. Moreover, we monitor no additional inhibition of cell proliferation and the homologous downregulation of GR is not counteracted by the combination of Dex and CpdA. In addition, CpdA is unable to modulate Dex-liganded GR transactivation and transrepression, yet, Dex-mediated transrepression is also aberrant in these lymphoid cell lines. Together, transrepression-favoring compounds, alone or combined with GCs, do not seem a valid strategy in the treatment of lymphoid malignancies.


Assuntos
Aziridinas/administração & dosagem , Dexametasona/administração & dosagem , Mieloma Múltiplo/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Apoptose/efeitos dos fármacos , Aziridinas/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Glucocorticoides/administração & dosagem , Glucocorticoides/química , Humanos , Mieloma Múltiplo/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Receptores de Glucocorticoides/genética , Ativação Transcricional/efeitos dos fármacos
10.
Oncotarget ; 8(65): 109675-109691, 2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29312638

RESUMO

Coregulators cooperate with nuclear receptors, such as the glucocorticoid receptor (GR), to enhance or repress transcription. These regulatory proteins are implicated in cancer, yet, their role in lymphoid malignancies, including multiple myeloma (MM) and acute lymphoblastic leukemia (ALL), is largely unknown. Here, we report the use and extension of the microarray assay for real-time nuclear receptor coregulator interactions (MARCoNI) technology to detect coregulator associations with endogenous GR in cell lysates. We use MARCoNI to determine the GR coregulator profile of glucocorticoid-sensitive (MM and ALL) and glucocorticoid-resistant (ALL) cells, and identify common and unique coregulators for different cell line comparisons. Overall, we identify SRC-1/2/3, PGC-1α, RIP140 and DAX-1 as the strongest interacting coregulators of GR in MM and ALL cells and show that the interaction strength does not correlate with GR protein levels. Lastly, as a step towards patient samples, we determine the GR coregulator profile of peripheral blood mononuclear cells. We profile the interactions between GR and coregulators in MM and ALL cells and suggest to further explore the GR coregulator profile in hematological patient samples.

11.
Oncoscience ; 3(7-8): 188-202, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27713909

RESUMO

Although adverse effects and glucocorticoid resistance cripple their chronic use, glucocorticoids form the mainstay therapy for acute and chronic inflammatory disorders, and play an important role in treatment protocols of both lymphoid malignancies and as adjuvant to stimulate therapy tolerability in various solid tumors. Glucocorticoid binding to their designate glucocorticoid receptor (GR), sets off a plethora of cell-specific events including therapeutically desirable effects, such as cell death, as well as undesirable effects, including chemotherapy resistance, systemic side effects and glucocorticoid resistance. In this context, selective GR agonists and modulators (SEGRAMs) with a more restricted GR activity profile have been developed, holding promise for further clinical development in anti-inflammatory and potentially in cancer therapies. Thus far, the research into the prospective benefits of selective GR modulators in cancer therapy limped behind. Our review discusses how selective GR agonists and modulators could improve the therapy regimens for lymphoid malignancies, prostate or breast cancer. We summarize our current knowledge and look forward to where the field should move to in the future. Altogether, our review clarifies novel therapeutic perspectives in cancer modulation via selective GR targeting.

12.
Eur J Pharmacol ; 715(1-3): 1-9, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-23831393

RESUMO

The glucocorticoid receptor is a nuclear receptor, and can be activated by glucocorticoid ligands. Mitogen- and stress-activated protein kinase (MSK1), when activated by p38 and ERK mitogen-activated protein kinases (MAPKs), plays a major role in chromatin relaxation via phosphorylation of histone H3 S10. The glucocorticoid receptor can target MSK1 as part of its anti-inflammatory mechanism. Here, we studied the converse mechanism, i.e. the impact of MSK1 on glucocorticoid receptor-mediated transactivation. Upstream MSK1-activating kinases concentration-dependently enhanced glucocorticoid response element (GRE)-regulated promoter activity. Correspondingly, MSK1 inhibition, via H89, or combined p38 and ERK MAPK inhibition, via SB203580 and U0126, diminished maximally stimulated GRE-regulated promoter activity using high concentrations of glucocorticoids. Concomitantly, the combination of these agents does not seem to alter site-specific phosphorylations of murine glucocorticoid receptor S212 or S220. Paradoxically, we reveal that a sub-maximally activated GRE-mediated promoter activity, by using lower concentrations of glucocorticoids, is consistently enhanced by H89 or a combination of SB203580 and U0126, irrespective of the GRE promoter context. Furthermore, we show that the glucocorticoid-induced nucleocytoplasmic translocation of MSK1 occurs in a glucocorticoid concentration-dependent manner. The observed glucocorticoid concentration-dependent effect of MSK1 or MAPK inhibition on glucocorticoid receptor transactivation warrants further research into the applicability of combined glucocorticoid and kinase inhibitor strategies for anti-inflammatory purposes.


Assuntos
Glucocorticoides/metabolismo , Glucocorticoides/farmacologia , Elementos de Resposta/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Animais , Linhagem Celular Tumoral , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Isoquinolinas/farmacologia , MAP Quinase Quinase 6/genética , MAP Quinase Quinase 6/metabolismo , Camundongos , Transporte Proteico/efeitos dos fármacos , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Elementos de Resposta/efeitos dos fármacos , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Sulfonamidas/farmacologia , Transcrição Gênica/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Transfecção , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA