Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6958, 2024 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521856

RESUMO

Mutations in myocilin (MYOC) are the leading known genetic cause of primary open-angle glaucoma, responsible for about 4% of all cases. Mutations in MYOC cause a gain-of-function phenotype in which mutant myocilin accumulates in the endoplasmic reticulum (ER) leading to ER stress and trabecular meshwork (TM) cell death. Therefore, knocking out myocilin at the genome level is an ideal strategy to permanently cure the disease. We have previously utilized CRISPR/Cas9 genome editing successfully to target MYOC using adenovirus 5 (Ad5). However, Ad5 is not a suitable vector for clinical use. Here, we sought to determine the efficacy of adeno-associated viruses (AAVs) and lentiviruses (LVs) to target the TM. First, we examined the TM tropism of single-stranded (ss) and self-complimentary (sc) AAV serotypes as well as LV expressing GFP via intravitreal (IVT) and intracameral (IC) injections. We observed that LV_GFP expression was more specific to the TM injected via the IVT route. IC injections of Trp-mutant scAAV2 showed a prominent expression of GFP in the TM. However, robust GFP expression was also observed in the ciliary body and retina. We next constructed lentiviral particles expressing Cas9 and guide RNA (gRNA) targeting MYOC (crMYOC) and transduction of TM cells stably expressing mutant myocilin with LV_crMYOC significantly reduced myocilin accumulation and its associated chronic ER stress. A single IVT injection of LV_crMYOC in Tg-MYOCY437H mice decreased myocilin accumulation in TM and reduced elevated IOP significantly. Together, our data indicates, LV_crMYOC targets MYOC gene editing in TM and rescues a mouse model of myocilin-associated glaucoma.


Assuntos
Proteínas do Citoesqueleto , Glaucoma de Ângulo Aberto , Glicoproteínas , Animais , Camundongos , Sistemas CRISPR-Cas , Modelos Animais de Doenças , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Glaucoma de Ângulo Aberto/genética , Glaucoma de Ângulo Aberto/terapia , Glaucoma de Ângulo Aberto/metabolismo , Pressão Intraocular/genética , Lentivirus/genética , Malha Trabecular/metabolismo
2.
Methods Mol Biol ; 2708: 77-97, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37558962

RESUMO

Viral transduction of the mouse trabecular meshwork using a variety of transgenes associated with glaucoma generates an inducible and reproducible method for generating ocular hypertension due to increased aqueous humor outflow resistance of the conventional outflow pathway. Both adenovirus serotype 5 (Ad5) and lentiviruses have selective tropism for the mouse trabecular meshwork with intraocular injections. Accurate intraocular pressures are easily measured using a rebound tonometer, and aqueous humor outflow facilities can be measured in anesthetized live mice.


Assuntos
Glaucoma , Hipertensão Ocular , Camundongos , Animais , Hipertensão Ocular/genética , Hipertensão Ocular/metabolismo , Pressão Intraocular , Malha Trabecular/metabolismo , Humor Aquoso/metabolismo
3.
Res Sq ; 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38196579

RESUMO

Mutations in myocilin (MYOC) are the leading known genetic cause of primary open-angle glaucoma, responsible for about 4% of all cases. Mutations in MYOC cause a gain-of-function phenotype in which mutant myocilin accumulates in the endoplasmic reticulum (ER) leading to ER stress and trabecular meshwork (TM) cell death. Therefore, knocking out myocilin at the genome level is an ideal strategy to permanently cure the disease. We have previously utilized CRISPR/Cas9 genome editing successfully to target MYOC using adenovirus 5 (Ad5). However, Ad5 is not a suitable vector for clinical use. Here, we sought to determine the efficacy of adeno-associated viruses (AAVs) and lentiviruses (LVs) to target the TM. First, we examined the TM tropism of single-stranded (ss) and self-complimentary (sc) AAV serotypes as well as LV expressing GFP via intravitreal (IVT) and intracameral (IC) injections. We observed that LV_GFP expression was more specific to the TM injected via the IVT route. IC injections of Trp-mutant scAAV2 showed a prominent expression of GFP in the TM. However, robust GFP expression was also observed in the ciliary body and retina. We next constructed lentiviral particles expressing Cas9 and guide RNA (gRNA) targeting MYOC (crMYOC) and transduction of TM cells stably expressing mutant myocilin with LV_crMYOC significantly reduced myocilin accumulation and its associated chronic ER stress. A single IVT injection of LV_crMYOC in Tg-MYOCY437H mice decreased myocilin accumulation in TM and reduced elevated IOP significantly. Together, our data indicates, LV_crMYOC targets MYOC gene editing in TM and rescues a mouse model of myocilin-associated glaucoma.

4.
Invest Ophthalmol Vis Sci ; 63(1): 16, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-35015027

RESUMO

Purpose: Extracellular matrix stiffening is characteristic of both aging and glaucoma, and acts as a promoter and perpetuator of pathological fibrotic remodeling. Here, we investigate the role of a mechanosensitive transcriptional coactivator, Yes-associated protein (YAP), a downstream effector of multiple signaling pathways, in lamina cribrosa (LC) cell activation to a profibrotic, glaucomatous state. Methods: LC cells isolated from glaucomatous human donor eyes (GLC; n = 3) were compared to LC cells from age-matched nonglaucomatous controls (NLC; n = 3) to determine differential YAP expression, protein levels, and proliferation rates. NLC cells were then cultured on soft (4 kPa), and stiff (100 kPa), collagen-1 coated polyacrylamide hydrogel substrates. Quantitative real-time RT-PCR, immunoblotting, and immunofluorescence microscopy were used to measure the expression, activity, and subcellular location of YAP and its downstream targets, respectively. Proliferation rates were examined in NLC and GLC cells by methyl thiazolyl tetrazolium salt assays, across a range of incrementally increased substrate stiffness. Endpoints were examined in the presence or absence of a YAP inhibitor, verteporfin (2 µM). Results: GLC cells show significantly (P < 0.05) increased YAP gene expression and total-YAP protein compared to NLC cells, with significantly increased proliferation. YAP regulation is mechanosensitive, because NLC cells cultured on pathomimetic, stiff substrates (100 kPa) show significantly upregulated YAP gene and protein expression, increased YAP phosphorylation at tyrosine 357, reduced YAP phosphorylation at serine 127, increased nuclear pooling, and increased transcriptional target, connective tissue growth factor. Accordingly, myofibroblastic markers, α-smooth muscle actin (α-SMA) and collagen type I, alpha 1 (Col1A1) are increased. Proliferation rates are elevated on 50 kPa substrates and tissue culture plastic. Verteporfin treatment significantly inhibits YAP-mediated cellular activation and proliferation despite a stiffened microenvironment. Conclusions: These data demonstrate how YAP plays a pivotal role in LC cells adopting a profibrotic and proliferative phenotype in response to the stiffened LC present in aging and glaucoma. YAP provides an attractive and novel therapeutic target, and its inhibition via verteporfin warrants further clinical investigation.


Assuntos
Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Glaucoma/genética , Mecanotransdução Celular/fisiologia , Disco Óptico/metabolismo , Proteínas Proto-Oncogênicas c-yes/genética , Proteínas de Sinalização YAP/genética , Western Blotting , Células Cultivadas , Glaucoma/metabolismo , Glaucoma/patologia , Humanos , Disco Óptico/patologia , Proteínas Proto-Oncogênicas c-yes/biossíntese , RNA/genética , Proteínas de Sinalização YAP/biossíntese
5.
Int J Mol Sci ; 22(12)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201109

RESUMO

Glaucoma is a group of optic neuropathies that leads to irreversible vision loss. The optic nerve head (ONH) is the site of initial optic nerve damage in glaucoma. ONH-derived lamina cribrosa (LC) cells synthesize extracellular matrix (ECM) proteins; however, these cells are adversely affected in glaucoma and cause detrimental changes to the ONH. LC cells respond to mechanical strain by increasing the profibrotic cytokine transforming growth factor-beta 2 (TGFß2) and ECM proteins. Moreover, microRNAs (miRNAs or miR) regulate ECM gene expression in different fibrotic diseases, including glaucoma. A delicate homeostatic balance between profibrotic and anti-fibrotic miRNAs may contribute to the remodeling of ONH. This study aimed to determine whether modulation of miRNAs alters the expression of ECM in human LC cells. Primary human normal and glaucoma LC cells were grown to confluency and treated with or without TGFß2 for 24 h. Differences in expression of miRNAs were analyzed using miRNA qPCR arrays. miRNA PCR arrays showed that the miR-29 family was significantly decreased in glaucomatous LC cell strains compared to age-matched controls. TGFß2 treatment downregulated the expression of multiple miRNAs, including miR-29c-3p, compared to controls in LC cells. LC cells transfected with miR-29c-3p mimics or inhibitors modulated collagen expression.


Assuntos
Regulação da Expressão Gênica , Glaucoma/genética , MicroRNAs/genética , Disco Óptico/metabolismo , Doenças do Nervo Óptico/genética , Fator de Crescimento Transformador beta2/farmacologia , Estudos de Casos e Controles , Perfilação da Expressão Gênica , Glaucoma/tratamento farmacológico , Glaucoma/patologia , Humanos , Disco Óptico/efeitos dos fármacos , Disco Óptico/patologia , Doenças do Nervo Óptico/tratamento farmacológico , Doenças do Nervo Óptico/patologia
6.
Invest Ophthalmol Vis Sci ; 62(6): 3, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33938911

RESUMO

Purpose: In POAG, elevated IOP remains the major risk factor in irreversible vision loss. Increased TGFß2 expression in POAG aqueous humor and in the trabecular meshwork (TM) amplifies extracellular matrix (ECM) deposition and reduces ECM turnover in the TM, leading to a decreased aqueous humor (AH) outflow facility and increased IOP. Inhibitor of DNA binding proteins (ID1 and ID3) inhibit TGFß2-induced fibronectin and PAI-1 production in TM cells. We examined the effects of ID1 and ID3 gene expression on TGFß2-induced ocular hypertension and decreased AH outflow facility in living mouse eyes. Methods: IOP and AH outflow facility changes were determined using a mouse model of Ad5-hTGFß2C226S/C288S-induced ocular hypertension. The physiological function of ID1 and ID3 genes were evaluated using Ad5 viral vectors to enhance or knockdown ID1/ID3 gene expression in the TM of BALB/cJ mice. IOP was measured in conscious mice using a Tonolab impact tonometer. AH outflow facilities were determined by constant flow infusion in live mice. Results: Over-expressing ID1 and ID3 significantly blocked TGFß2-induced ocular hypertension (P < 0.0001). Although AH outflow facility was significantly decreased in TGFß2-transduced eyes (P < 0.04), normal outflow facility was preserved in eyes injected concurrently with ID1 or ID3 along with TGFß2. Knockdown of ID1 or ID3 expression exacerbated TGFß2-induced ocular hypertension. Conclusions: Increased expression of ID1 and ID3 suppressed both TGFß2-elevated IOP and decreased AH outflow facility. ID1 and/or ID3 proteins thus may show promise as future candidates as IOP-lowering targets in POAG.


Assuntos
Humor Aquoso/fisiologia , Proteína 1 Inibidora de Diferenciação/fisiologia , Proteínas Inibidoras de Diferenciação/fisiologia , Pressão Intraocular/efeitos dos fármacos , Hipertensão Ocular/induzido quimicamente , Malha Trabecular/efeitos dos fármacos , Fator de Crescimento Transformador beta2/farmacologia , Adenoviridae/genética , Animais , Feminino , Técnicas de Silenciamento de Genes , Vetores Genéticos , Injeções Intravítreas , Camundongos , Camundongos Endogâmicos BALB C , Hipertensão Ocular/metabolismo , Tonometria Ocular , Malha Trabecular/metabolismo
7.
Am J Pathol ; 191(6): 1020-1035, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33705750

RESUMO

Glucocorticoid-induced glaucoma is a secondary open-angle glaucoma. About 40% of the general population may develop elevated intraocular pressure on prolonged glucocorticoid treatment secondary to damages in the trabecular meshwork (TM), a tissue that regulates intraocular pressure. Therefore, identifying the key molecules responsible for glucocorticoid-induced ocular hypertension is crucial. In this study, Dickkopf-related protein 1 (Dkk1), a canonical Wnt signaling inhibitor, was found to be elevated in the aqueous humor and TM of glaucoma patients. At the signaling level, Dkk1 enhanced glucocorticoid receptor (GR) signaling, whereas Dkk1 knockdown or Wnt signaling activators decreased GR signaling in human TM cells as indicated by luciferase assays. Similarly, activation of the GR signaling inhibited Wnt signaling. At the protein level, glucocorticoid-induced extracellular matrix was inhibited by Wnt activation using Wnt activators or Dkk1 knockdown in primary human TM cells. In contrast, inhibition of canonical Wnt signaling by ß-catenin knockdown increased glucocorticoid-induced extracellular matrix proteins. At the physiological level, adenovirus-mediated Wnt3a expression decreased glucocorticoid-induced ocular hypertension in mouse eyes. In summary, Wnt and GR signaling inhibit each other in the TM, and canonical Wnt signaling activators may prevent the adverse effect of glucocorticoids in the eye.


Assuntos
Glaucoma/metabolismo , Receptores de Glucocorticoides/metabolismo , Malha Trabecular/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Feminino , Glaucoma/induzido quimicamente , Glucocorticoides/efeitos adversos , Humanos , Imunossupressores/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL
8.
Invest Ophthalmol Vis Sci ; 61(13): 4, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33137197

RESUMO

Purpose: The lamina cribrosa (LC) is a key site of damage in glaucomatous optic neuropathy. We previously found that glaucoma LC cells have an increased profibrotic gene expression, with mitochondrial dysfunction in the form of decreased mitochondrial membrane potential. Altered cell bioenergetics have recently been reported in organ fibrosis and in cancer. In this study, we carried out a systematic mitochondrial bioenergetic assessment and measured markers of alternative sources of cellular energy in normal and glaucoma LC cells. Methods: LC cells from three glaucoma donors and three age-matched normal controls were assessed using VICTOR X4 Perkin Elmer (Waltham, MA) plate reader with different phosphorescent and luminescent probes. adenosine triphosphate levels, oxygen consumption rate, and extracellular acidification were measured and normalized to total protein content. RNA and protein expression levels of MCT1, MCT4, MTFHD2, and GLS2 were quantified using real-time RT-PCR and Western blotting. Results: Glaucoma LC cells contain significantly less adenosine triphosphate (P < .05) when supplied with either glucose or galactose. They also showed significantly diminished oxygen consumption in both basal and maximal respiration with more lactic acid contribution in ECA. Both mRNA and protein expression levels of MCT1, MCT4, MTHFD2, and GLS2 were significantly increased in glaucoma LC cells. Conclusions: We demonstrate evidence of metabolic reprogramming (The Warburg effect) in glaucoma LC cells. Expression of markers of glycolysis, glutamine, and one carbon metabolism are elevated in glaucoma cells at both the mRNA and protein levels. A better understanding of bioenergetics in glaucoma may help in the development of new therapeutics.


Assuntos
Glaucoma de Ângulo Aberto/metabolismo , Glicólise/fisiologia , Doenças Mitocondriais/metabolismo , Disco Óptico/metabolismo , Doenças do Nervo Óptico/metabolismo , Fosforilação Oxidativa , Trifosfato de Adenosina/metabolismo , Aminoidrolases/genética , Aminoidrolases/metabolismo , Biomarcadores , Western Blotting , Células Cultivadas , Perfilação da Expressão Gênica , Glaucoma de Ângulo Aberto/patologia , Proteína Glial Fibrilar Ácida/metabolismo , Glutaminase/genética , Glutaminase/metabolismo , Humanos , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo , Doenças Mitocondriais/patologia , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Enzimas Multifuncionais/genética , Enzimas Multifuncionais/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Disco Óptico/patologia , Doenças do Nervo Óptico/patologia , Consumo de Oxigênio/fisiologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Simportadores/genética , Simportadores/metabolismo , Doadores de Tecidos
9.
Clin Anat ; 31(7): 1031-1049, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30117188

RESUMO

Glaucoma is a leading cause of irreversible vision loss and is associated with fibrotic changes in two ocular tissues-the optic nerve head (ONH) and trabecular meshwork (TM). We investigated the differences in extracellular matrix components (ECM) including collagen, elastin, transforming growth factor beta-2, type-II receptor (TGFßRII) and Galectin3 (Gal3) in the glaucomatous human eyes to quantify fibrotic changes in ONH and TM. Glaucomatous and control human donor eyes were prepared for chemical and immunological staining to quantify ECM protein expression in the TM and ONH. Chemical staining included: Trichrome (collagen), Vernhoeff-Van Giesen (elastin) and Sirius Red (collagen). Immunohistochemistry was used to determine levels of Gal3 and TGFß2RII. Quantitative analyses were performed using Image J software. Student's t-test was used to compare groups and Pearson's test was used to determine correlations P-values of 0.05 (or less) were considered statistically significant. Deposition of ECM proteins was elevated in glaucomatous tissues. There was increased collagen (P = 0.0469), Gal3 (P < 0.0001) and TGFß2RII (P = 0.0005) in the TM of glaucomatous eyes. Likewise, collagen (P = 0.0517) and Galectin3 (P = 0.041) were increased in the ONH glaucomatous eyes. There was a correlation of TGFßRII with Gal3 in the TM (P < 0.0001) and optic nerve (P = 0.0003). The TM and ONH of glaucomatous eyes showed increased expression of ECM proteins supporting a fibrotic pathology. Galectin3 and TGFß-2R II showed a positive correlation in TM and optic nerve supporting co-localization and suggesting their potential role in the glaucoma fibrotic process. Clin. Anat. 31:1031-1049, 2018. © 2018 The Authors. Clinical Anatomy published by Wiley Periodicals, Inc. on behalf of American Association of Clinical Anatomists.


Assuntos
Galectina 3/metabolismo , Glaucoma/metabolismo , Disco Óptico/metabolismo , Malha Trabecular/metabolismo , Idoso , Idoso de 80 Anos ou mais , Proteínas Sanguíneas , Estudos de Casos e Controles , Proteínas da Matriz Extracelular/metabolismo , Colágenos Fibrilares/metabolismo , Fibrose , Galectinas , Glaucoma/patologia , Humanos , Disco Óptico/patologia , Malha Trabecular/patologia , Fator de Crescimento Transformador beta2/metabolismo
10.
Exp Eye Res ; 176: 188-195, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30006274

RESUMO

Optic nerve astrocytes play a major role in axonal degeneration and regeneration. Astrocyte lines are an important tool to elucidate the responsible cellular mechanisms. In this study, we established a conditionally immortalized mouse optic nerve astrocyte line. Astrocytes were cultured from explants derived from postnatal day 4-5 H-2kb-tsA58 transgenic mouse optic nerves. Cells were cultured in defined astrocyte culture medium under permissive (33 °C) or non-permissive (38.5 °C) temperatures with or without interferon-ɤ (IFN-ɤ). Astrocytes were characterized by immunocytochemistry staining using antibodies against glial fibrillary acidic protein (GFAP) and neural cell adhesion molecule (NCAM). Cell proliferation rates were determined by cell growth curves and percentage of Ki67 positive cells. Karyotyping was performed to validate the mouse origin of established cell line. Conditional immortalization was assessed by western blot-determined expression levels of SV40 large T antigen (TAg), p53, GFAP and NCAM in non-permissive culture conditions. In addition, phagocytic activity of immortalized cells was determined by flow cytometry-based pHrodo fluorescence analysis. After 5 days in culture, cells migrated out from optic nerve explants. Immunocytochemistry staining showed that migrating cells expressed astrocyte makers, GFAP and NCAM. In permissive conditions, astrocytes had increased expression levels of TAg and p53, exhibited a greater cell proliferation rate as well as a higher percentage of Ki67 positive cells (n = 3, p < 0.05) compared to cells cultured in non-permissive conditions. One cell line (ImB1ON) was further maintained through 60 generations. Karyotyping showed that ImB1ON was of mouse origin. Flow cytometry-based pHrodo fluorescence analysis demonstrated phagocytic activity of ImB1ON cells. Quantitative PCR showed mRNA expression of trophic factors. Non-permissive culture conditions decreased expression of TAg and p53 in ImB1ON, and increased the expression of NCAM. A conditionally immortalized mouse optic nerve astrocyte line was established. This cell line provides an important tool to study astrocyte biological processes.


Assuntos
Astrócitos/citologia , Nervo Óptico/citologia , Animais , Antígenos Transformantes de Poliomavirus/metabolismo , Astrócitos/metabolismo , Western Blotting , Antígeno CD56/metabolismo , Técnicas de Cultura de Células , Linhagem Celular , Proliferação de Células/fisiologia , Citometria de Fluxo , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica , Cariotipagem , Camundongos , Camundongos Transgênicos , Nervo Óptico/metabolismo , Fagocitose , Proteína Supressora de Tumor p53/metabolismo
11.
Invest Ophthalmol Vis Sci ; 59(5): 2154-2166, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29801150

RESUMO

Purpose: The trabecular meshwork (TM) has an important role in the regulation of aqueous humor outflow and IOP. Regulation of the extracellular matrix (ECM) by TGFß2 has been studied extensively. Bone morphogenetic protein (BMP) and activin membrane-bound inhibitor (BAMBI) has been shown to inhibit or modulate TGFß2 signaling. We investigate the role of TGFß2 and BAMBI in the regulation of TM ECM and ocular hypertension. Methods: Mouse TM (MTM) cells were isolated from B6;129S1-Bambitm1Jian/J flox mice, characterized for TGFß2 and dexamethasone (DEX)-induced expression of fibronectin, collagen-1, collagen-4, laminin, α-smooth muscle actin, cross-linked actin networks (CLANs) formation, and DEX-induced myocilin (MYOC) expression. MTM cells were transduced with Ad5.GFP to identify transduction efficiency. MTM cells and mouse eyes were transduced with Ad5.Null, Ad5.Cre, Ad5.TGFß2, or Ad5.TGFß2 + Ad5.Cre to evaluate the effect on ECM production, IOP, and outflow facility. Results: MTM cells express TM markers and respond to DEX and TGFß2. Ad5.GFP at 100 MOI had the highest transduction efficiency. Bambi knockdown by Ad5.Cre and Ad5.TGFß2 increased fibronectin, collagen-1, and collagen-4 in TM cells in culture and tissue. Ad5.Cre, Ad5.TGFß2, and Ad5.TGFß2 + Ad5.Cre each significantly induced ocular hypertension and lowered aqueous humor outflow facility in transduced eyes. Conclusions: We show for the first time to our knowledge that knockdown of Bambi alters ECM expression in cultured cells and mouse TM, reduces outflow facility, and causes ocular hypertension. These data provide a novel insight into the development of glaucomatous TM damage and identify BAMBI as an important regulator of TM ECM and ocular hypertension.


Assuntos
Proteínas Morfogenéticas Ósseas/fisiologia , Proteínas da Matriz Extracelular/metabolismo , Proteínas de Membrana/fisiologia , Hipertensão Ocular/metabolismo , Malha Trabecular/metabolismo , Adenoviridae/genética , Animais , Células Cultivadas , Dexametasona/farmacologia , Glucocorticoides/farmacologia , Pressão Intraocular/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transfecção , Fator de Crescimento Transformador beta2/farmacologia
12.
Invest Ophthalmol Vis Sci ; 59(3): 1454-1466, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29625468

RESUMO

Purpose: Wnt/ß-catenin signaling in the trabecular meshwork (TM) is required for maintaining normal intraocular pressure (IOP), although the mechanism(s) behind this are unknown. We hypothesize that Wnt/ß-catenin signaling regulates IOP via ß-catenin's effects on cadherin junctions. Methods: Nonglaucomatous primary human TM (NTM) cells were treated with or without 100 ng/ml Wnt3a, 1 µg/ml sFRP1, or both for 4 to 48 hours. Cells were immunostained for ß-catenin, total cadherins, or cadherin isoforms. Membrane proteins or whole-cell lysates were isolated for Western immunoblotting and probed for cadherin isoforms. RNA was extracted for cDNA synthesis and qPCR analysis of cadherin expression. Some NTM cells were cultured on electric plates for cell impedance assays. Ad5.CMV recombinant adenoviruses encoding K-cadherin, and/or sFRP1 were injected into eyes of 4- to 6-month-old female BALB/cJ mice (n = 8-10). Conscious IOPs were assessed for 35 days. Results: Upon Wnt3a treatment, total cadherin expression increased and ß-catenin accumulated at the TM cell membrane and on processes formed between TM cells. qPCR showed that Wnt3a significantly increased K-cadherin expression in NTM cells (P < 0.01, n = 3), and Western immunoblotting showed that Wnt3a increased K-cadherin in NTM cells, which was inhibited by the addition of sFRP1. Cell impedance assays showed that Wnt3a treatment increased transcellular resistance and anti-K-cadherin siRNA decreased transcellular resistance (P < 0.001, n = 4-6). Our in vivo study showed that K-cadherin significantly decreased sFRP1-induced ocular hypertension (P < 0.05, n = 6). Western immunoblotting also showed that K-cadherin alleviated sFRP1-induced ß-catenin decrease in mouse anterior segments. Conclusions: Our results suggest that cadherins play important roles in the regulation of TM homeostasis and IOP via the Wnt/ß-catenin pathway.


Assuntos
Caderinas/fisiologia , Pressão Intraocular/fisiologia , Malha Trabecular/efeitos dos fármacos , Malha Trabecular/metabolismo , Via de Sinalização Wnt/fisiologia , Proteína Wnt3A/farmacologia , beta Catenina/fisiologia , Animais , Western Blotting , Caderinas/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Isoformas de Proteínas/metabolismo , Transdução de Sinais/fisiologia , beta Catenina/metabolismo
13.
Exp Eye Res ; 171: 106-110, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29535003

RESUMO

Glaucoma is a vision threatening optic neuropathy that affects millions of people worldwide. In primary open angle, increased intraocular pressure (IOP) is the main risk factor for the development of this disease. Studies investigating the causes and mechanisms of increased IOP show fibrotic changes in the trabecular meshwork (TM) that are different from those of age-matched controls. Tissue transglutaminase (TGM2), an extracellular matrix (ECM) crosslinking enzyme, covalently crosslinks ECM proteins and causes excessive ECM protein deposition in the TM that could cause increased IOP. Previous literature reports increased expression of TGM2 in glaucomatous eyes compared to controls. We recently have shown that overexpression of TGM2 causes increased ECM crosslinking in the TM, increases IOP, and decreases aqueous humor (AH) outflow facility in mouse eyes. Therefore, we wanted to study the effect of TGM2 knockout (KO) on IOP in TGM2 floxed mice. Ad5.Cre transduction caused partial KO of TGM2, which decreased TGM2 expression in the TM region of mouse eyes. TGM2 KO significantly decreased IOP by itself and also in TGFß2 induced ocular hypertensive mice. TGM2 KO also restores the outflow facility in TGFß2 transduced eyes. Overall, TGM2 KO rescued the TGFß2-induced ocular hypertensive phenotype. Thus, TGM2 may offer potential as a new therapeutic target for glaucoma.


Assuntos
Proteínas de Ligação ao GTP/genética , Pressão Intraocular , Hipertensão Ocular/prevenção & controle , Malha Trabecular/enzimologia , Transglutaminases/genética , Adenoviridae/genética , Animais , Regulação Enzimológica da Expressão Gênica/fisiologia , Técnicas de Inativação de Genes , Pressão Intraocular/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hipertensão Ocular/induzido quimicamente , Hipertensão Ocular/enzimologia , Proteína 2 Glutamina gama-Glutamiltransferase , Reação em Cadeia da Polimerase em Tempo Real , Tonometria Ocular , Transfecção , Fator de Crescimento Transformador beta2/toxicidade
14.
Invest Ophthalmol Vis Sci ; 58(14): 6197-6211, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29222550

RESUMO

Purpose: Tissue transglutaminase (TGM2) is elevated in glaucomatous trabecular meshwork (TM) tissues. We investigated whether increased expression of TGM2 increases extracellular matrix crosslinking in the TM, thereby increasing aqueous humor outflow resistance and elevating intraocular pressure (IOP) in mouse eyes. Methods: GTM3, primary human GTM 125-05, and cultured mouse TM cells were transduced with adenovirus serotype 5 expressing human transglutaminase 2 (Ad5.TGM2; multiplicity of infection [MOI]-75) and fixed for immunocytochemistry. To test the effect on IOP in living eyes, Ad5.TGM2 was injected intravitreally into one eye of BALB/cJ (n = 18) or C57BL/6J mice (n = 9). The uninjected contralateral eye and Ad5.GFP served as controls. Daytime conscious IOPs were measured twice per week. Aqueous outflow facility (C) was measured by constant flow infusion on completion of IOP measurements. Immunohistochemistry was performed on BALB/cJ mouse eyes to study TGM2 expression and activity. Results: The treatment of cultured TM cells with Ad5.TGM2 increased immunostaining of N-ε(γ-glutamyl) lysine crosslinks. Ad5.TGM2 injection significantly increased IOP in BALB/cJ (15.86 mm Hg [injected] vs. 10.70 mm Hg [control]) and in C57BL/6J mice (17.09 mm Hg [injected] vs. 12.01 mm Hg [control]). Mean aqueous outflow facility in the injected eyes of BALB/cJ (0.013 µL/min/mm Hg) and C57BL/6J mice (0.012 µL/min/mm Hg) was significantly lower than in the uninjected control eyes (BALB/cJ, 0.021 µL/min/mm Hg; C57BL/6J, 0.019 µL/min/mm Hg). The Ad5.TGM2 transduction of mouse eyes increased TGM2 expression in the TM region and increased N-ε(γ-glutamyl) lysine crosslinks. Conclusions: The increased expression of TGM2 in the TM increases N-ε(γ-glutamyl) lysine crosslinking in the TM, increases aqueous outflow resistance, and elevates IOP in mice. TGM2 may be at least partially responsible for ocular hypertension in POAG.


Assuntos
Humor Aquoso/enzimologia , Proteínas de Ligação ao GTP/genética , Regulação da Expressão Gênica , Glaucoma de Ângulo Aberto/genética , Pressão Intraocular , RNA/genética , Malha Trabecular/enzimologia , Transglutaminases/genética , Animais , Western Blotting , Células Cultivadas , Proteínas de Ligação ao GTP/biossíntese , Glaucoma de Ângulo Aberto/enzimologia , Glaucoma de Ângulo Aberto/patologia , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Proteína 2 Glutamina gama-Glutamiltransferase , Malha Trabecular/patologia , Transglutaminases/biossíntese
15.
Invest Ophthalmol Vis Sci ; 58(3): 1811-1823, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28346614

RESUMO

Purpose: The trabecular meshwork (TM) is involved in the outflow of aqueous humor and intraocular pressure (IOP) regulation. Regulation of the extracellular matrix (ECM) by TGFß2 signaling pathways in the TM has been extensively studied. Recent evidence has implicated toll-like receptor 4 (TLR4) in the regulation of ECM and fibrogenesis in liver, kidney, lung, and skin. Here, we investigated the role of TGFß2-TLR4 signaling crosstalk in the regulation of the ECM in the TM and ocular hypertension. Methods: Cross sections of human donor eyes, primary human TM cells in culture, and dissected mouse TM rings were used to determine Tlr4 expression in the TM. Trabecular meshwork cells in culture were treated with TGFß2 (5 ng/mL), TLR4 inhibitor (TAK-242, 15 µM), and a TLR4 ligand (cellular fibronectin isoform [cFN]-EDA). A/J (n = 13), AKR/J (n = 7), BALBc/J (n = 8), C3H/HeJ (n = 20), and C3H/HeOuJ (n = 10) mice were injected intravitreally with adenovirus 5 (Ad5).hTGFß2c226s/c228s in one eye, with the uninjected contralateral eye serving as a control. Conscious IOP measurements were taken using a TonoLab rebound tonometer. Results: Toll-like receptor 4 is expressed in the human and mouse TM. Inhibition of TLR4 signaling in the presence of TGFß2 decreases fibronectin expression. Activation of TLR4 by cFN-EDA in the presence of TGFß2 further increases fibronectin, laminin, and collagen-1 expression, and TLR4 signaling inhibition blocks this effect. Ad5.hTGFß2c226s/c228s induces ocular hypertension in wild-type mice but has no effect in Tlr4 mutant (C3H/HeJ) mice. Conclusions: These studies identify TGFß2-TLR4 crosstalk as a novel pathway involved in ECM regulation in the TM and ocular hypertension. These data further explain the complex mechanisms involved in the development of glaucomatous TM damage.


Assuntos
Humor Aquoso/metabolismo , Regulação da Expressão Gênica , Hipertensão Ocular/genética , RNA/genética , Receptor 4 Toll-Like/genética , Malha Trabecular/metabolismo , Fator de Crescimento Transformador beta2/genética , Animais , Western Blotting , Células Cultivadas , Humanos , Imuno-Histoquímica , Pressão Intraocular , Camundongos , Camundongos Endogâmicos AKR , Camundongos Endogâmicos C3H , Hipertensão Ocular/metabolismo , Hipertensão Ocular/patologia , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Receptor 4 Toll-Like/biossíntese , Malha Trabecular/patologia , Fator de Crescimento Transformador beta2/biossíntese
16.
Invest Ophthalmol Vis Sci ; 58(2): 1288-1295, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28241317

RESUMO

Purpose: Increased intraocular pressure results from increased aqueous humor (AH) outflow resistance at the trabecular meshwork (TM) due to pathologic changes including the formation of cross-linked actin networks (CLANs). Transforming growth factor ß2 (TGFß2) is elevated in the AH and TM of primary open angle glaucoma (POAG) patients and induces POAG-associated TM changes, including CLANs. We determined the role of individual TGFß2 signaling pathways in CLAN formation. Methods: Cultured nonglaucomatous human TM (NTM) cells were treated with control or TGFß2, with or without the inhibitors of TGFß receptor, Smad3, c-Jun N-terminal kinases (JNK), extracellular signal regulated kinase (ERK), P38, or Rho-associated protein kinase (ROCK). NTM cells were cotreated with TGFß2 plus inhibitors for 10 days or pretreated with TGFß2 for 10 days followed by 1-hour inhibitor treatment. NTM cells were immunostained with phalloidin-Alexa-488 and 4',6-diamidino-2-phenylindole (DAPI). Data were analyzed using 1-way ANOVA and Dunnett's post hoc test. Results: TGFß2 significantly induced CLAN formation (n = 6 to 12, P < 0.05), which was completely inhibited by TGFß receptor, Smad3, and ERK inhibitors, as well as completely or partially inhibited by JNK, P38, and ROCK inhibitors, depending on cell strains. One-hour exposure to ROCK inhibitor completely resolved formed CLANs (P < 0.05), whereas TGFß receptor, Smad3 inhibitor, and ERK inhibitors resulted in partial or complete resolution. The JNK and P38 inhibitors showed partial or no resolution. Among these inhibitors, the ROCK inhibitor was the most disruptive to the actin stress fibers, whereas ERK inhibition showed the least disruption. Conclusions: TGFß2-induced CLANs in NTM cells were prevented and resolved using various pathway inhibitors. Apart from CLAN inhibition, some of these inhibitors also had different effects on actin stress fibers.


Assuntos
Actinas/metabolismo , Proteína Smad3/metabolismo , Malha Trabecular/efeitos dos fármacos , Fator de Crescimento Transformador beta2/farmacologia , Análise de Variância , Humor Aquoso/metabolismo , Western Blotting , Células Cultivadas , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas Serina-Treonina Quinases , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta , Transdução de Sinais/fisiologia , Malha Trabecular/metabolismo , Fator de Crescimento Transformador beta2/antagonistas & inibidores , Fator de Crescimento Transformador beta2/fisiologia
17.
Invest Ophthalmol Vis Sci ; 58(2): 849-859, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28159972

RESUMO

Purpose: Increased expression of TGF-ß2 in primary open-angle glaucoma (POAG) aqueous humor (AH) and trabecular meshwork (TM) causes deposition of extracellular matrix (ECM) in the TM and elevated IOP. Bone morphogenetic proteins (BMPs) regulate TGF-ß2-induced ECM production. The underlying mechanism for BMP4 inhibition of TGF-ß2-induced fibrosis remains undetermined. Bone morphogenic protein 4 induces inhibitor of DNA binding proteins (ID1, ID3), which suppress transcription factor activities to regulate gene expression. Our study will determine whether ID1and ID3 proteins are downstream targets of BMP4, which attenuates TGF-ß2 induction of ECM proteins in TM cells. Methods: Primary human TM cells were treated with BMP4, and ID1 and ID3 mRNA, and protein expression was determined by quantitative PCR (Q-PCR) and Western immunoblotting. Intracellular ID1 and ID3 protein localization was studied by immunocytochemistry. Transformed human TM cells (GTM3 cells) were transfected with ID1 or ID3 expression vectors to determine their potential inhibitory effects on TGF-ß2-induced fibronectin and plasminogen activator inhibitor-I (PAI-1) protein expression. Results: Basal expression of ID1-3 was detected in primary human TM cells. Bone morphogenic protein 4 significantly induced early expression of ID1 and ID3 mRNA (P < 0.05) and protein in primary TM cells, and a BMP receptor inhibitor blocked this induction. Overexpression of ID1 and ID3 significantly inhibited TGF-ß2-induced expression of fibronectin and PAI-1 in TM cells (P < 0.01). Conclusions: Bone morphogenic protein 4 induced ID1 and ID3 expression suppresses TGF-ß2 profibrotic activity in human TM cells. In the future, targeting specific regulators may control the TGF-ß2 profibrotic effects on the TM, leading to disease modifying IOP lowering therapies.


Assuntos
Proteína Morfogenética Óssea 4/fisiologia , Proteína 1 Inibidora de Diferenciação/metabolismo , Proteínas Inibidoras de Diferenciação/metabolismo , Proteínas de Neoplasias/metabolismo , Malha Trabecular/metabolismo , Fator de Crescimento Transformador beta2/metabolismo , Humor Aquoso/metabolismo , Western Blotting , Proteína Morfogenética Óssea 4/antagonistas & inibidores , Proteína Morfogenética Óssea 4/farmacologia , Células Cultivadas , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Fibronectinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inibidor 1 de Ativador de Plasminogênio/metabolismo , RNA Mensageiro/metabolismo , Malha Trabecular/efeitos dos fármacos , Fator de Crescimento Transformador beta2/antagonistas & inibidores
18.
Invest Ophthalmol Vis Sci ; 57(8): 3698-707, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27403998

RESUMO

PURPOSE: Elevated intraocular pressure (IOP) in primary open-angle glaucoma (POAG) results from glaucomatous damage to the trabecular meshwork (TM). The glaucoma-associated factor TGFß2 is increased in aqueous humor and TM of POAG patients. We hypothesize that histone acetylation has a role in dysregulated TGFß2 expression. METHODS: Protein acetylation was compared between nonglaucomatous TM (NTM) and glaucomatous TM (GTM) cells using Western immunoblotting (WB). Nonglaucomatous TM cells were treated with 10 nM thailandepsin-A (TDP-A), a potent histone deacetylase inhibitor for 4 days. Total and nuclear proteins, RNA, and nuclear protein-DNA complexes were harvested for WB, quantitative PCR (qPCR), and chromatin immunoprecipitation (ChIP) assays, respectively. Paired bovine eyes were perfused with TDP-A versus DMSO, or TDP-A versus TDP-A plus the TGFß pathway inhibitor LY364947 for 5 to 9 days. Intraocular pressure, TM, and perfusate proteins were compared. RESULTS: We found increased acetylated histone 3 and total protein acetylation in the GTM cells and TDP-A treated NTM cells. Chromatin immunoprecipitation assays showed that TDP-A induced histone hyperacetylation associated with the TGFß2 promoter. This change of acetylation significantly increased TGFß2 mRNA and protein expression in NTM cells. In perfusion-cultured bovine eyes, TDP-A increased TGFß2 in the perfusate as well as elevated IOP. Histologic and immunofluorescent analyses showed increased extracellular matrix and cytoskeletal proteins in the TM of TDP-A treated bovine eyes. Cotreatment with the TGFß pathway inhibitor LY364947 blocked TDP-A-induced ocular hypertension. CONCLUSIONS: Our results suggest that histone acetylation has an important role in increased expression of the glaucoma-associated factor TGFß2. Histone hyperacetylation may be the initiator of glaucomatous damage to the TM.


Assuntos
Epigênese Genética/genética , Glaucoma de Ângulo Aberto/genética , Inibidores de Histona Desacetilases/farmacologia , Malha Trabecular/fisiologia , Fator de Crescimento Transformador beta2/genética , Acetilação , Animais , Bovinos , Células Cultivadas , Pirazóis/farmacologia , Pirróis/farmacologia , RNA Mensageiro/metabolismo
19.
Exp Eye Res ; 147: 156-160, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27167364

RESUMO

Glaucoma patients have elevated aqueous humor and trabecular meshwork (TM) levels of transforming growth factor-beta2 (TGF-ß2). TGF-ß2 has been associated with increased extracellular matrix (ECM) deposition (i.e. fibronectin), which is attributed to the increased resistance of aqueous humor outflow through the TM. We have previously demonstrated that bone morphogenetic protein (BMP) 4 selectively counteracts the profibrotic effect of TGF-ß2 with respect to ECM synthesis in the TM, and this action is reversed by the BMP antagonist gremlin. Thus, the BMP and TGF-ß signaling pathways antagonize each other's antifibrotic and profibrotic roles. The purpose of this study was to determine whether cultured human TM cells: (a) express other BMP antagonists including noggin, chordin, BMPER, BAMBI, Smurf1 and 2, and (b) whether expression of these proteins is regulated by exogenous TGF-ß2 treatment. Primary human trabecular meshwork (TM) cells were grown to confluency and treated with TGF-ß2 (5 ng/ml) for 24 or 48 h in serum-free medium. Untreated cell served as controls. qPCR and Western immunoblots (WB) determined that human TM cells expressed mRNAs and proteins for the BMP antagonist proteins: noggin, chordin, BMPER, BAMBI, and Smurf1/2. Exogenous TGF-ß2 decreased chordin, BMPER, BAMBI, and Smurf1 mRNA and protein expression. In contrast, TGF-ß2 increased secreted noggin and Smurf2 mRNA and protein levels. BMP antagonist members are expressed in the human TM. These molecules may be involved in the normal function of the TM as well as TM pathogenesis. Altered expression of BMP antagonist members may lead to functional changes in the human TM.


Assuntos
Proteínas Morfogenéticas Ósseas , Glaucoma/metabolismo , RNA Mensageiro/metabolismo , Malha Trabecular/metabolismo , Humor Aquoso/metabolismo , Western Blotting , Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Proteínas Morfogenéticas Ósseas/metabolismo , Células Cultivadas , Matriz Extracelular/metabolismo , Humanos , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Malha Trabecular/efeitos dos fármacos , Fator de Crescimento Transformador beta2/metabolismo , Fator de Crescimento Transformador beta2/farmacologia
20.
Exp Eye Res ; 148: 97-102, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27091054

RESUMO

Primary Open Angle Glaucoma (POAG) is an irreversible, vision-threatening disease that affects millions worldwide. The principal risk factor of POAG is increased intraocular pressure (IOP) due to pathological changes in the trabecular meshwork (TM). The TGFß signaling pathway activator TGFß2 and the Wnt signaling pathway inhibitor secreted frizzled-related protein 1 (sFRP1) are elevated in the POAG TM. In this study, we determined whether there is a crosstalk between the TGFß/Smad pathway and the canonical Wnt pathway using luciferase reporter assays. Lentiviral luciferase reporter vectors for studying the TGFß/Smad pathway or the canonical Wnt pathway were transduced into primary human non-glaucomatous TM (NTM) cells. Cells were treated with or without a combination of 5 µg/ml TGFß2 and/or 100 ng/ml Wnt3a recombinant proteins, and luciferase levels were measured using a plate reader. We found that TGFß2 inhibited Wnt3a-induced canonical Wnt pathway activation, while Wnt3a inhibited TGFß2-induced TGFß/Smad pathway activation (n = 6, p < 0.05) in 3 NTM cell strains. We also found that knocking down of Smad4 or ß-catenin using siRNA in HTM5 cells transfected with similar luciferase reporter plasmids abolished the inhibitory effect of TGFß2 and/or Wnt3a on the other pathway (n = 6). Our results suggest the existence of a cross-inhibition between the TGFß/Smad and canonical Wnt pathways in the TM, and this cross-inhibition may be mediated by Smad4 and ß-catenin.


Assuntos
Glaucoma de Ângulo Aberto/metabolismo , Malha Trabecular/metabolismo , Fator de Crescimento Transformador beta2/fisiologia , Via de Sinalização Wnt/fisiologia , Proteína Wnt3A/fisiologia , Idoso , Idoso de 80 Anos ou mais , Western Blotting , Feminino , Humanos , Luciferases/metabolismo , Masculino , Transdução de Sinais/fisiologia , Proteína Smad4/metabolismo , Fator de Crescimento Transformador beta2/metabolismo , Fator de Crescimento Transformador beta2/farmacologia , Proteína Wnt3A/metabolismo , Proteína Wnt3A/farmacologia , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA