Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Appl Spectrosc ; 73(4): 433-443, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30347999

RESUMO

The analytical differentiation of the indole ring regioisomeric chloro-1- n-pentyl-3-(1-naphthoyl)-indoles is described in this report. The regioisomeric chloroindole precursor compounds, N- n-pentyl chloroindole synthetic intermediates, and the target chloro-substituted naphthoylindoles showed the equivalent gas chromatographic elution order based on the position of chlorine substitution on the indole ring. The regioisomeric chloro-1- n-pentyl-3-(1-naphthoyl)-indoles yield electron ionization mass spectra having equivalent major fragments resulting from cleavage of the groups attached to the central indole nucleus. Fragment ions occur at m/z 127 and 155 for the naphthyl and naphthoyl cations common to all indoles having the naphthoyl group substituted at the indole-3 position. Fragments resulting from the loss of the naphthoyl and/or n-pentyl groups from the molecular radical cation yield the cations at m/z 318, 304, 248, and 178. The characteristic (M-17)+ fragment ion at m/z 358 resulting from the loss of OH radical is significant in the mass spectra of all these compounds with 1-naphthoyl groups substituted at the indole-3 position. The vapor phase infrared spectra provide a number of characteristic absorption bands to identify the individual isomers.

2.
Toxicol Mech Methods ; 28(3): 177-186, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28874085

RESUMO

Benzylpiperazine has been designated as Schedule I substance under the Controlled Substances Act by Drug Enforcement Administration. Benzylpiperazine is a piperazine derivative, elevates both dopamine and serotonin extracellular levels producing stimulatory and hallucinogenic effects, respectively, similar to methylenedioxymethamphetamine (MDMA). However, the comparative neurotoxic effects of Piperazine derivatives (benzylpiperazine and benzoylpiperazine) have not been elucidated. Here, piperazine derivatives (benzylpiperazine and benzoylpiperazine) were synthesized in our lab and the mechanisms of cellular-based neurotoxicity were elucidated in a dopaminergic human neuroblastoma cell line (SH-SY5Y). We evaluated the in vitro effects of benzylpiperazine and benzoylpiperazine on the generation of reactive oxygen species, lipid peroxidation, mitochondrial complex-I activity, catalase activity, superoxide dismutase activity, glutathione content, Bax, caspase-3, Bcl-2 and tyrosine hydroxylase expression. Benzylpiperazine and benzoylpiperazine induced oxidative stress, inhibited mitochondrial functions and stimulated apoptosis. This study provides a germinal assessment of the neurotoxic mechanisms induced by piperazine derivatives that lead to neuronal cell death.


Assuntos
Apoptose/efeitos dos fármacos , Agonistas de Dopamina/toxicidade , Neurônios Dopaminérgicos/efeitos dos fármacos , Alucinógenos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Piperazinas/toxicidade , Proteínas Reguladoras de Apoptose/agonistas , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/metabolismo , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Drogas Desenhadas/química , Drogas Desenhadas/toxicidade , Agonistas de Dopamina/química , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo I de Transporte de Elétrons/metabolismo , Alucinógenos/química , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Estrutura Molecular , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Concentração Osmolar , Piperazinas/química , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/metabolismo
3.
Rapid Commun Mass Spectrom ; 27(22): 2551-2558, 2013 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-24123644

RESUMO

RATIONALE: Piperazine-based designer drugs represent a novel class of substances found in illicit drug samples in the US and abroad. The clandestine production of these substances often makes use of piperazine as a key commercially available precursor substance. The commercial availability of 1-methylpiperazine suggests additional designer modification based on this additional precursor material. METHODS: This study focuses on the electron ionization mass spectrometric (EI-MS) fragmentation of the dimethoxybenzyl-N-methylpiperazines as potential designer modifications of the general benzylpiperazine drug skeleton and explores the gas chromatography (GC)/MS properties of all six of these regioisomeric substances. RESULTS: Fragmentation of the bond between the benzylic carbon and the adjacent piperazine nitrogen provides the base peak in all six spectra. The internal fragmentation within the piperazine ring produces a number of unique ions in the mass spectra of these dimethoxybenzyl-N-methylpiperazines. The migration of methyl groups from nitrogen and oxygen were confirmed by deuterium-labeling experiments. CONCLUSIONS: The six regioisomeric dimethoxybenzyl-N-methylpiperazines yield equivalent fragment ions and deuterium labeling confirmed the elemental composition of the characteristic fragments in their mass spectra. Mixtures of the dimethoxybenzyl-N-methylpiperazines were successfully resolved via capillary gas chromatography using a relatively polar stationary phase and temperature-programming conditions. Copyright © 2013 John Wiley & Sons, Ltd.

4.
J Chromatogr Sci ; 45(8): 458-65, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18019554

RESUMO

The methoxy methyl phenylacetones share an isobaric relationship (equivalent mass but different elemental composition) to the controlled precursor substance 3,4-methylenedioxyphenylacetone. The 10 methoxy methyl phenylacetones as well as the methylenedioxyphenylacetones show essentially equivalent mass spectra with major fragment ions at m/z 135 and 43. Those methoxy methyl phenylacetones with the methoxy group substituted ortho to the benzylic cation in the m/z 135 ion show a further fragmentation to lose formaldehyde (CH2O) and yield a significant ion at m/z 105. The loss of formaldehyde from the ortho methoxy benzyl cation was confirmed using commercially available regioisomeric 2-, 3-, and 4-methoxyphenylacetones. The 10 regioisomeric methoxy methyl phenylacetones were prepared from the appropriately substituted benzaldehydes. Complete gas chromatographic resolution of all ten regioisomeric ketones was obtained on a stationary phase containing modified beta-cyclodextrin. Using the cyclodextrin containing phase, the ortho methoxy-substituted ketones (K1-K4) eluted before the meta-methoxy-substituted ketones (K5-K8) and the para-methoxy-substituted ketones (K9-K10) showed the greatest affinity for the stationary liquid phase and eluted last. Complete separation of the 10 ketones was not obtained on Rtx-1 and Rtx-200 columns.


Assuntos
Acetona/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Estereoisomerismo
5.
J Chromatogr Sci ; 42(6): 293-8, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15296528

RESUMO

Gas chromatographic (GC) optimization studies are conducted for the 10 methylenedioxyphenethylamine regioisomeric substances related to the drug of abuse 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy). These 10 compounds, having the same molecular weight and equivalent major mass spectral fragments, are not completely resolved using typical GC-mass spectrometry screening methods for illicit drugs. MDMA coelutes with at least one nondrug regioisomer under standard drug screening conditions. Separation of the 10 regioisomers is studied using stationary phases of varying polarities. Resolution optimization shows that very slow program rates give the best separation for the nonpolar stationary phases, requiring analysis times of as much as 85 min. Narrow-bore columns containing the same nonpolar stationary phases improve the analysis time to approximately 29 min. The polar stationary phase DB-35MS allows high-temperature programming rates, yielding complete resolution of all 10 compounds in less than 7 min. Temperature program optimization studies on the DB-35MS phase allow the separation time to be reduced to approximately 4.5 min.


Assuntos
Cromatografia Gasosa/métodos , N-Metil-3,4-Metilenodioxianfetamina/análise , Ciências Forenses , Isomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA