Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Cancers (Basel) ; 15(22)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38001740

RESUMO

There is little argument that the K-RAS onco-protein is the most important single oncoprotein in human cancer [...].

2.
Cancers (Basel) ; 15(16)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37627161

RESUMO

BRCA1 is a tumor suppressor with a complex mode of action. Hereditary mutations in BRCA1 predispose carriers to breast cancer, and spontaneous breast cancers often exhibit defects in BRCA1 expression. However, haploinsufficiency or suppression of BRCA1 expression leads to defects in DNA repair, which can induce DNA damage responses, leading to senescence. Activating mutation or overexpression of the Her2 oncoprotein are also frequent drivers of breast cancer. Yet, over-activation of Her2, working through the RAS oncoprotein, can also induce senescence. It is thought that additional defects in the p53 and Rb tumor suppressor machinery must occur in such tumors to allow an escape from senescence, thus permitting tumor development. Although BRCA1 mutant breast cancers are usually Her2 negative, a significant percentage of Her2 positive tumors also lose their expression of BRCA1. Such Her2+/BRCA1- tumors might be expected to have a particularly high senescence barrier to overcome. An important RAS senescence effector is the protein NORE1A, which can modulate both p53 and Rb. It is an essential senescence effector of the RAS oncoprotein, and it is often downregulated in breast tumors by promotor methylation. Here we show that NORE1A forms a Her2/RAS regulated, endogenous complex with BRCA1 at sites of replication fork arrest. Suppression of NORE1A blocks senescence induction caused by BRCA1 inactivation and Her2 activation. Thus, NORE1A forms a tumor suppressor complex with BRCA1. Its frequent epigenetic inactivation may facilitate the transformation of Her2+/BRCA1- mediated breast cancer by suppressing senescence.

3.
Methods Mol Biol ; 2262: 303-310, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33977485

RESUMO

RASSF1A is a Ras effector that promotes the anti-proliferative properties of Ras. It acts as a scaffold protein that regulates several pro-apoptotic signaling pathways, thereby linking Ras to their regulation. However, accumulating evidence suggests that RASSF1A functions as a regulator of other additional biological processes, such as DNA repair and transcription, thereby implicating Ras in the modulation of these biological processes. The mechanisms by which RASSF1A modulates these processes is not fully understood but likely involves interacting with other effectors associated with these functions and coordinating their activity. Thus, to fully understand how RASSF1A manifests its activity, it is critical to identify RASSF1A interacting partners.Unfortunately, the reagents available for the detection of RASSF1A are of poor quality and also exhibit low sensitivity. Here we describe an immunoprecipitation protocol, taking into consideration the limitations of currently available reagents, that can reliably detect the endogenous interaction between RASSF1A and its binding partners.


Assuntos
Proteínas de Transporte/metabolismo , Immunoblotting/métodos , Imunoprecipitação/métodos , Domínios e Motivos de Interação entre Proteínas , Proteínas Supressoras de Tumor/metabolismo , Humanos
4.
Cancers (Basel) ; 12(12)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348649

RESUMO

Lung cancer is the leading cause of cancer-related death worldwide. Lung cancer is commonly driven by mutations in the RAS oncogenes, the most frequently activated oncogene family in human disease. RAS-induced tumorigenesis is inhibited by the tumor suppressor RASSF1A, which induces apoptosis in response to hyperactivation of RAS. RASSF1A expression is suppressed in cancer at high rates, primarily owing to promoter hypermethylation. Recent reports have shown that loss of RASSF1A expression uncouples RAS from apoptotic signaling in vivo, thereby enhancing tumor aggressiveness. Moreover, a concomitant upregulation of RAS mitogenic signaling upon RASSF1A loss has been observed, suggesting RASSF1A may directly regulate RAS activation. Here, we present the first mechanistic evidence for control of RAS activation by RASSF1A. We present a novel interaction between RASSF1A and the Ras GTPase Activating Protein (RasGAP) DAB2IP, an important negative regulator of RAS. Using shRNA-mediated knockdown and stable overexpression approaches, we demonstrate that RASSF1A upregulates DAB2IP protein levels in NSCLC cells. Suppression of RASSF1A and subsequent downregulation of DAB2IP enhances GTP loading onto RAS, thus increasing RAS mitogenic signaling in both mutant- and wildtype-RAS cells. Moreover, co-suppression of RASSF1A and DAB2IP significantly enhances in vitro and in vivo growth of wildtype-RAS cells. Tumors expressing wildtype RAS, therefore, may still suffer from hyperactive RAS signaling when RASSF1A is downregulated. This may render them susceptible to the targeted RAS inhibitors currently in development.

5.
J Cell Sci ; 133(3)2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32041893

RESUMO

Mutations that activate the RAS oncoproteins are common in cancer. However, aberrant upregulation of RAS activity often occurs in the absence of activating mutations in the RAS genes due to defects in RAS regulators. It is now clear that loss of function of Ras GTPase-activating proteins (RasGAPs) is common in tumors, and germline mutations in certain RasGAP genes are responsible for some clinical syndromes. Although regulation of RAS is central to their activity, RasGAPs exhibit great diversity in their binding partners and therefore affect signaling by multiple mechanisms that are independent of RAS. The RASSF family of tumor suppressors are essential to RAS-induced apoptosis and senescence, and constitute a barrier to RAS-mediated transformation. Suppression of RASSF protein expression can also promote the development of excessive RAS signaling by uncoupling RAS from growth inhibitory pathways. Here, we will examine how these effectors of RAS contribute to tumor suppression, through both RAS-dependent and RAS-independent mechanisms.


Assuntos
Neoplasias , Proteínas Ativadoras de ras GTPase , Apoptose , Proteínas Ativadoras de GTPase , Humanos , Neoplasias/genética , Transdução de Sinais
7.
Sci Rep ; 9(1): 4177, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30862796

RESUMO

The tumor microenvironment (TME) is composed of a heterogeneous biological ecosystem of cellular and non-cellular elements including transformed tumor cells, endothelial cells, immune cells, activated fibroblasts or myofibroblasts, stem and progenitor cells, as well as the cytokines and matrix that they produce. The constituents of the TME stroma are multiple and varied, however cancer associated fibroblasts (CAF) and their contribution to the TME are important in tumor progression. CAF are hypothesized to arise from multiple progenitor cell types, including mesenchymal stem cells. Currently, isolation of TME stroma from patients is complicated by issues such as limited availability of biopsy material and cell stress incurred during lengthy adaptation to atmospheric oxygen (20% O2) in cell culture, limiting pre-clinical studies of patient tumor stromal interactions. Here we describe a microenvironment mimetic in vitro cell culturing system that incorporates elements of the in vivo lung environment, including lung fibroblast derived extracellular matrix and physiological hypoxia (5% O2). Using this system, we easily isolated and rapidly expanded stromal progenitors from patient lung tumor resections without complex sorting methods or growth supplements. These progenitor populations retained expression of pluripotency markers, secreted factors associated with cancer progression, and enhanced tumor cell growth and metastasis. An understanding of the biology of these progenitor cell populations in a TME-like environment may advance our ability to target these cells and limit their effects on promoting cancer metastasis.


Assuntos
Neoplasias Pulmonares/patologia , Células-Tronco Mesenquimais/patologia , Microambiente Tumoral , Idoso , Animais , Biomarcadores Tumorais/metabolismo , Biópsia , Comunicação Celular , Hipóxia Celular , Linhagem da Célula , Proliferação de Células , Separação Celular , Feminino , Humanos , Imunofenotipagem , Masculino , Camundongos , Pessoa de Meia-Idade , Metástase Neoplásica , Células Estromais/metabolismo , Células Tumorais Cultivadas
8.
Cancer Res ; 78(10): 2614-2623, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29735543

RESUMO

Mutant K-RAS has been shown to have both tumor-promoting and -suppressing functions, and growing evidence suggests that the RASSF family of tumor suppressors can act as RAS apoptosis and senescence effectors. It has been hypothesized that inactivation of the RASSF1A tumor suppressor facilitates K-RAS-mediated transformation by uncoupling it from apoptotic pathways such as the Hippo pathway. In human lung tumors, combined activation of K-RAS and inactivation of RASSF1A is closely associated with the development of the most aggressive and worst prognosis tumors. Here, we describe the first transgenic mouse model for activation of K-RAS in the lung in a RASSF1A-defective background. RASSF1A deficiency profoundly enhanced the development of K-RAS-driven lung tumors in vivo Analysis of these tumors showed loss of RASSF1A-uncoupled RAS from the proapoptotic Hippo pathway as expected. We also observed an upregulation of AKT and RALGEF signaling in the RASSF1A- tumors. Heterozygosity of RASSF1A alone mimicked many of the effects of RAS activation on mitogenic signaling in lung tissue, yet no tumors developed, indicating that nonstandard Ras signaling pathways may be playing a key role in tumor formation in vivo In addition, we observed a marked increase in inflammation and IL6 production in RASSF1A-deficient tumors. Thus, RASSF1A loss profoundly affects RAS-driven lung tumorigenesis and mitogenic signaling in vivo Deregulation of inflammatory pathways due to loss of RASSF1A may be essential for RAS-mediated tumorigenesis. These results may have considerable ramifications for future targeted therapy against RAS+/RASSF1A- tumors.Significance: A transgenic mouse model shows that suppression of RASSF1A dramatically enhances Ras-driven tumorigenesis and alters Ras signaling pathway activity.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/10/2614/F1.large.jpg Cancer Res; 78(10); 2614-23. ©2018 AACR.


Assuntos
Transformação Celular Neoplásica/patologia , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética , Células A549 , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Metilação de DNA/genética , Células HEK293 , Via de Sinalização Hippo , Humanos , Interleucina-6/biossíntese , Neoplasias Pulmonares/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regiões Promotoras Genéticas/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética
9.
BMC Cancer ; 18(1): 421, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29653561

RESUMO

BACKGROUND: Dysregulation of microRNA (miRNA) expression is associated with hallmarks of aggressive tumor phenotypes, e.g., enhanced cell growth, proliferation, invasion, and anchorage independent growth in prostate cancer (PCa). METHODS: Serum-based miRNA profiling involved 15 men diagnosed with non-metastatic (stage I, III) and metastatic (stage IV) PCa and five age-matched disease-free men using miRNA arrays with select targets confirmed by quantitative real-time PCR (qRT-PCR). The effect of miR-186-5p inhibition or ectopic expression on cellular behavior of PCa cells (i.e., PC-3, MDA-PCa-2b, and LNCaP) involved the use bromodeoxyuridine (BrdU) incorporation, invasion, and colony formation assays. Assessment of the impact of miR-186-5p inhibition or overexpression on selected targets entailed microarray analysis, qRT-PCR, and/or western blots. Statistical evaluation used the modified t-test and ANOVA analysis. RESULTS: MiR-186-5p was upregulated in serum from PCa patients and metastatic PCa cell lines (i.e., PC-3, MDA-PCa-2b, LNCaP) compared to serum from disease-free individuals or a normal prostate epithelial cell line (RWPE1), respectively. Inhibition of miR-186-5p reduced cell proliferation, invasion, and anchorage-independent growth of PC-3 and/or MDA-PCa-2b PCa cells. AKAP12, a tumor suppressor target of miR-186-5p, was upregulated in PC-3 and MDA-PCa-2b cells transfected with a miR-186-5p inhibitor. Conversely, ectopic miR-186-5p expression in HEK 293 T cells decreased AKAP12 expression by 30%. Both pAKT and ß-catenin levels were down-regulated in miR-186-5p inhibited PCa cells. CONCLUSIONS: Our findings suggest miR-186-5p plays an oncogenic role in PCa. Inhibition of miR-186-5p reduced PCa cell proliferation and invasion as well as increased AKAP12 expression. Future studies should explore whether miR-186-5p may serve as a candidate prognostic indicator and a therapeutic target for the treatment of aggressive prostate cancer.


Assuntos
MicroRNAs/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , MicroRNA Circulante , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , MicroRNAs/sangue , Invasividade Neoplásica , Metástase Neoplásica , Estadiamento de Neoplasias , Neoplasias da Próstata/sangue , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Reprodutibilidade dos Testes , Transcriptoma , beta Catenina/genética
10.
J Gastrointest Surg ; 22(6): 1104-1111, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29520647

RESUMO

BACKGROUND: Colonic interposition is a second-line option after oesophagectomy when a gastric neo-oesophagus is not viable. There is no consensus on the optimum anatomical colonic conduit (right or left), or route of placement (posterior mediastinal, retrosternal or subcutaneous). The aim of this review was to determine the optimum site and route of neo-oesophageal conduit after adult oesophagectomy. METHODS: PubMed, MEDLINE, and the Cochrane Library (January 1985 to January 2017) were systematically searched for studies which reported outcomes following colonic interposition in adults. The outcome measures were overall morbidity and mortality. RESULTS: Twenty-seven observational studies involving 1849 patients [1177 males; median age (range) 60.5 (18-84) years] undergoing colonic interposition for malignant (n = 697) and benign (n = 1152) pathology were analysed. Overall pooled morbidity of left vs. right colonic conduit was 15.7% [95% CI (11.93-19.46), p < 0.001] and 18.7% [95% CI (15.58-21.82), p < 0.001] respectively. Overall pooled mortality of left vs. right colonic conduit was 6.5% [95% CI (4.55-8.51), p < 0.001] and 10.1% [95% CI (7.35-12.82), p < 0.001] respectively. Retrosternal route placement was associated with the lowest overall pooled morbidity and mortality of 9.2% [95% CI (6.48-11.99), p < 0.001] and 4.8% [95% CI (3.74-5.89), p < 0.001] respectively. CONCLUSION: Left colonic conduits placed retrosternally were safest.


Assuntos
Colo/transplante , Neoplasias Esofágicas/cirurgia , Esofagectomia , Esôfago/cirurgia , Estruturas Criadas Cirurgicamente , Humanos , Estruturas Criadas Cirurgicamente/efeitos adversos , Transplante Autólogo/efeitos adversos , Transplante Autólogo/métodos , Resultado do Tratamento
11.
Cancer Lett ; 400: 30-36, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28455242

RESUMO

The Ras genes are the most frequently mutated oncogenes in human cancer. However, Ras biology is quite complex. While Ras promotes tumorigenesis by regulating numerous growth promoting pathways, activated Ras can paradoxically also lead to cell cycle arrest, death, and Oncogene-Induced Senescence (OIS). OIS is thought to be a critical pathway that serves to protect cells against aberrant Ras signaling. Multiple reports have highlighted the importance of the p53 and Rb tumor suppressors in Ras mediated OIS. However, until recently, the molecular mechanisms connecting Ras to these proteins remained unknown. The RASSF family of tumor suppressors has recently been identified as direct effectors of Ras. One of these members, NORE1A (RASSF5), may be the missing link between Ras-induced senescence and the regulation of p53 and Rb. This occurs both quantitatively, by promoting protein stability, as well as qualitatively via promoting critical pro-senescent post-translational modifications. Here we review the mechanisms by which NORE1A can activate OIS as a barrier against Ras-mediated transformation, and how this could lead to improved therapeutic strategies against cancers having lost NORE1A expression.


Assuntos
Proliferação de Células , Transformação Celular Neoplásica/genética , Senescência Celular , Genes Supressores de Tumor , Proteínas Monoméricas de Ligação ao GTP/genética , Neoplasias/genética , Oncogenes , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas Reguladoras de Apoptose , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Humanos , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Fenótipo , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
12.
Hepatology ; 65(5): 1462-1477, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28090674

RESUMO

Hepatitis C virus (HCV) infection is a common risk factor for the development of liver cancer. The molecular mechanisms underlying this effect are only partially understood. Here, we show that the HCV protein, nonstructural protein (NS) 5B, directly binds to the tumor suppressor, NORE1A (RASSF5), and promotes its proteosomal degradation. In addition, we show that NORE1A colocalizes to sites of HCV viral replication and suppresses the replication process. Thus, NORE1A has antiviral activity, which is specifically antagonized by NS5B. Moreover, the suppression of NORE1A protein levels correlated almost perfectly with elevation of Ras activity in primary human samples. Therefore, NORE1A inactivation by NS5B may be essential for maximal HCV replication and may make a major contribution to HCV-induced liver cancer by shifting Ras signaling away from prosenescent/proapoptotic signaling pathways. CONCLUSION: HCV uses NS5B to specifically suppress NORE1A, facilitating viral replication and elevated Ras signaling. (Hepatology 2017;65:1462-1477).


Assuntos
Hepacivirus/fisiologia , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose , Carcinoma Hepatocelular/virologia , Regulação para Baixo , Células HEK293 , Humanos , Fígado/metabolismo , Fígado/virologia , Neoplasias Hepáticas/virologia , Complexo de Endopeptidases do Proteassoma/metabolismo
13.
J Gastrointest Surg ; 21(6): 1067-1075, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28108931

RESUMO

BACKGROUND: Oesophageal diverticula are rare outpouchings of the oesophagus which may be classified anatomically as pharyngeal (Zenker's), mid-oesophageal and epiphrenic. While surgery is indicated for symptomatic patients, no consensus exists regarding the optimum technique for non-Zenker's oesophageal diverticula. The aim of this study was to determine the outcome of surgery in patients with non-Zenker's oesophageal diverticula. METHODS: PubMed, MEDLINE and the Cochrane Library (January 1990 to January 2016) were searched for studies which reported outcomes of surgery in patients with non-Zenker's oesophageal diverticula. Primary outcome measure was the rate of staple line leakage. RESULTS: Twenty-five observational studies involving 511 patients (259 male, median age 62 years) with mid-oesophageal (n = 53) and epiphrenic oesophageal (n = 458) diverticula who had undergone surgery [thoracotomy (n = 252), laparoscopy (n = 204), thoracoscopy (n = 42), laparotomy (n = 5), combined laparoscopy and thoracoscopy (n = 8)] were analysed. Myotomy was performed in 437 patients (85.5%), and anti-reflux procedures were performed in 342 patients (69.5%). Overall pooled staple line leak rates were reported in 13.3% [95% c.i. (11.0-15.7), p < 0.001] and were less common after myotomy (12.4%) compared with no myotomy (26.1%, p = 0.002). CONCLUSIONS: No consensus exists regarding the surgical treatment of non-Zenker's oesophageal diverticula, but staple line leakage is common and is reduced significantly by myotomy.


Assuntos
Fístula Anastomótica/etiologia , Divertículo Esofágico/cirurgia , Humanos , Laparoscopia/efeitos adversos , Miotomia/efeitos adversos , Estudos Observacionais como Assunto , Toracoscopia/efeitos adversos , Toracotomia/efeitos adversos
14.
Semin Cell Dev Biol ; 58: 86-95, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27288568

RESUMO

There are six core RASSF family proteins that contain conserved Ras Association domains and may serve as Ras effectors. They lack intrinsic enzymatic activity and appear to function as scaffolding and localization molecules. While initially being associated with pro-apoptotic signaling pathways such as Bax and Hippo, it is now clear that they can also connect Ras to a surprisingly broad range of signaling pathways that control senescence, inflammation, autophagy, DNA repair, ubiquitination and protein acetylation. Moreover, they may be able to impact the activation status of pro-mitogenic Ras effector pathways, such as the Raf pathway. The frequent epigenetic inactivation of RASSF genes in human tumors disconnects Ras from pro-death signaling systems, enhancing Ras driven transformation and metastasis. The best characterized members are RASSF1A and RASSF5 (NORE1A).


Assuntos
Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Proteínas ras/metabolismo , Animais , Humanos , Modelos Biológicos
15.
Mol Cell Oncol ; 3(3): e1055050, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27314075

RESUMO

RAS-induced senescence is a protective mechanism to avoid unrestricted cell growth due to aberrant mitogenic signals; however, the exact mechanism by which RAS induces senescence is not known. We recently identified a novel pathway linking RAS to p53 via NORE1A and HIPK2 that mechanistically explains how Ras induces senescence.

16.
Oncotarget ; 7(23): 33821-31, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-27034171

RESUMO

The TOR pathway is a vital component of cellular homeostasis that controls the synthesis of proteins, nucleic acids and lipids. Its core is the TOR kinase. Activation of the TOR pathway suppresses autophagy, which plays a vital but complex role in tumorigenesis. The TOR pathway is regulated by activation of the Ras-related protein Rheb, which can bind mTOR. The Hippo pathway is a major growth control module that regulates cell growth, differentiation and apoptosis. Its core consists of an MST/LATS kinase cascade that can be activated by the RASSF1A tumor suppressor. The TOR and Hippo pathways may be coordinately regulated to promote cellular homeostasis. However, the links between the pathways remain only partially understood. We now demonstrate that in addition to mTOR regulation, Rheb also impacts the Hippo pathway by forming a complex with RASSF1A. Using stable clones of two human lung tumor cell lines (NCI-H1792 and NCI-H1299) with shRNA-mediated silencing or ectopic overexpression of RASSF1A, we show that activated Rheb stimulates the Hippo pathway, but is suppressed in its ability to stimulate the TOR pathway. Moreover, by selectively labeling autophagic vacuoles we show that RASSF1A inhibits the ability of Rheb to suppress autophagy and enhance cell growth. Thus, we identify a new connection that impacts coordination of Hippo and TOR signaling. As RASSF1A expression is frequently lost in human tumors, the RASSF1A status of a tumor may impact not just its Hippo pathway status, but also its TOR pathway status.


Assuntos
Neoplasias Pulmonares/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Apoptose , Autofagia , Linhagem Celular Tumoral , Proliferação de Células , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Via de Sinalização Hippo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Ligação Proteica , Interferência de RNA , Proteína Enriquecida em Homólogo de Ras do Encéfalo/genética , Fatores de Tempo , Transfecção , Proteínas Supressoras de Tumor/genética
17.
Cancers (Basel) ; 8(4)2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-27023610

RESUMO

Mouse Double Minute 2 Homolog (MDM2) is a key negative regulator of the master tumor suppressor p53. MDM2 regulates p53 on multiple levels, including acting as an ubiquitin ligase for the protein, thereby promoting its degradation by the proteasome. MDM2 is oncogenic and is frequently found to be over-expressed in human tumors, suggesting its dysregulation plays an important role in human cancers. We have recently found that the Ras effector and RASSF (Ras Association Domain Family) family member RASSF5/NORE1A enhances the levels of nuclear p53. We have also found that NORE1A (Novel Ras Effector 1A) binds the substrate recognition component of the SCF-ubiquitin ligase complex ß-TrCP. Here, we now show that NORE1A regulates MDM2 protein levels by targeting it for ubiquitination by SCF-ß-TrCP. We also show the suppression of NORE1A protein levels enhances MDM2 protein expression. Finally, we show that MDM2 can suppress the potent senescence phenotype induced by NORE1A over-expression. Thus, we identify a mechanism by which Ras/NORE1A can modulate p53 protein levels. As MDM2 has several important targets in addition to p53, this finding has broad implications for cancer biology in tumor cells that have lost expression of NORE1A due to promoter methylation.

18.
Cell Cycle ; 15(17): 2263-4, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26919075

RESUMO

Although Ras is a potent oncogene in human tumors it has the paradoxical ability to promote Oncogene Induced Senescence (OIS). This appears to serve as a major barrier to Ras driven transformation in vivo. The signaling pathways used by Ras to promote senescence remain relatively poorly understood, but appear to invoke both the p53 and the Rb master tumor suppressors. Exactly how Ras communicates with p53 and Rb has remained something of a puzzle. NORE1A is a direct Ras effector that is frequently downregulated in human tumors. We have now found that it serves as a powerful Ras senescence effector. Moreover, we have defined signaling mechanisms that allows Ras to control both p53 and Rb post-translational modifications via the NORE1A scaffolding molecule. Indeed, NORE1A can be detected in complex with both p53 and Rb. Thus, by coupling Ras to both tumor suppressors, NORE1A forms a major component of the Ras senescence machinery and serves as the missing link between Ras and p53/Rb.


Assuntos
Senescência Celular , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteína do Retinoblastoma/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas ras/metabolismo , Humanos , Modelos Biológicos
19.
J Biol Chem ; 291(6): 3114-23, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26677227

RESUMO

Mutations in the Ras oncogene are one of the most frequent events in human cancer. Although Ras regulates numerous growth-promoting pathways to drive transformation, it can paradoxically promote an irreversible cell cycle arrest known as oncogene-induced senescence. Although senescence has clearly been implicated as a major defense mechanism against tumorigenesis, the mechanisms by which Ras can promote such a senescent phenotype remain poorly defined. We have shown recently that the Ras death effector NORE1A plays a critical role in promoting Ras-induced senescence and connects Ras to the regulation of the p53 tumor suppressor. We now show that NORE1A also connects Ras to the regulation of a second major prosenescent tumor suppressor, the retinoblastoma (Rb) protein. We show that Ras induces the formation of a complex between NORE1A and the phosphatase PP1A, promoting the activation of the Rb tumor suppressor by dephosphorylation. Furthermore, suppression of Rb reduces NORE1A senescence activity. These results, together with our previous findings, suggest that NORE1A acts as a critical tumor suppressor node, linking Ras to both the p53 and the Rb pathways to drive senescence.


Assuntos
Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteína do Retinoblastoma/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas Reguladoras de Apoptose , Células COS , Senescência Celular/genética , Chlorocebus aethiops , Células HEK293 , Células Hep G2 , Humanos , Proteínas Monoméricas de Ligação ao GTP/genética , Fosforilação/genética , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteína do Retinoblastoma/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
20.
PLoS One ; 10(9): e0138065, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26371754

RESUMO

Poor survival rates from lung cancer can largely be attributed to metastatic cells that invade and spread throughout the body. The tumor microenvironment (TME) is composed of multiple cell types, as well as non-cellular components. The TME plays a critical role in the development of metastatic cancers by providing migratory cues and changing the properties of the tumor cells. The Extracellular Matrix (ECM), a main component of the TME, has been shown to change composition during tumor progression, contributing to cancer cell invasion and survival away from the primary cancer site. Although the ECM is well-known to influence the fate of tumor progression, little is known about the molecular mechanisms that are affected by the cancer cell-ECM interactions. It is imperative that these mechanisms are elucidated in order to properly understand and prevent lung cancer dissemination. However, common in vitro studies do not incorporate these interactions into everyday cell culture assays. We have adopted a model that examines decellularized human fibroblast-derived ECM as a 3-dimensional substrate for growth of lung adenocarcinoma cell lines. Here, we have characterized the effect of fibroblast-derived matrices on the properties of various lung-derived epithelial cell lines, including cancerous and non-transformed cells. This work highlights the significance of the cell-ECM interaction and its requirement for incorporation into in vitro experiments. Implementation of a fibroblast-derived ECM as an in vitro technique will provide researchers with an important factor to manipulate to better recreate and study the TME.


Assuntos
Técnicas de Cultura de Células/métodos , Matriz Extracelular/patologia , Fibroblastos/patologia , Linhagem Celular Tumoral , Proliferação de Células , Células Epiteliais/citologia , Células Epiteliais/patologia , Humanos , Neoplasias Pulmonares/patologia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA