Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
RSC Chem Biol ; 5(6): 567-571, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38846076

RESUMO

Cyclotides are a diverse class of plant-derived cyclic, disulfide-rich peptides with a unique cyclic cystine knot topology. Their remarkable structural stability and resistance to proteolytic degradation can lead to improved pharmacokinetics and oral activity as well as selectivity and high enzymatic stability. Thus, cyclotides have emerged as powerful scaffold molecules for designing peptide-based therapeutics. The chemical engineering of cyclotides has generated novel peptide ligands of G protein-coupled receptors (GPCRs), today's most exploited drug targets. However key challenges potentially limit the widespread use of cyclotides in molecular grafting applications. Folding of cyclotides containing bioactive epitopes remains a major bottleneck in cyclotide synthesis. Here we present a modular 'plug and play' approach that effectively bypasses problems associated with the oxidative folding of cyclotides. By grafting onto a pre-formed acyclic cyclotide-like scaffold we show that difficult-to-graft sequences can be easily obtained and can target GPCRs with nanomolar affinities and potencies. We further show the suitability of this new method to graft other complex epitopes including structures with additional disulfide bonds that are not readily available via currently employed chemical methods, thus fully unlocking cyclotides to be used in drug design applications.

2.
Biochem Pharmacol ; : 116175, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38552850

RESUMO

Acid-sensing ion channel 1a (ASIC1a) is a proton-gated channel involved in synaptic transmission, pain signalling, and several ischemia-associated pathological conditions. The spider venom-derived peptides PcTx1 and Hi1a are two of the most potent ASIC1a inhibitors known and have been instrumental in furthering our understanding of the structure, function, and biological roles of ASICs. To date, homologous spider peptides with different pharmacological profiles at ASIC1a have yet to be discovered. Here we report the characterisation of Hc3a, a single inhibitor cystine knot peptide from the Australian funnel-web spider Hadronyche cerberea with sequence similarity to PcTx1. We show that Hc3a has complex pharmacology and binds different ASIC1a conformational states (closed, open, and desensitised) with different affinities, with the most prominent effect on desensitisation. Hc3a slows the desensitisation kinetics of proton-activated ASIC1a currents across multiple application pHs, and when bound directly to ASIC1a in the desensitised conformation promotes current inhibition. The solution structure of Hc3a was solved, and the peptide-channel interaction examined via mutagenesis studies to highlight how small differences in sequence between Hc3a and PcTx1 can lead to peptides with distinct pharmacology. The discovery of Hc3a expands the pharmacological diversity of spider venom peptides targeting ASIC1a and adds to the toolbox of compounds to study the intricacies of ASIC1 gating.

3.
Proc Natl Acad Sci U S A ; 121(5): e2314627121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38252818

RESUMO

The complement factor C5a is a core effector product of complement activation. C5a, acting through its receptors C5aR1 and C5aR2, exerts pleiotropic immunomodulatory functions in myeloid cells, which is vital for host defense against pathogens. Pattern-recognition receptors (PRRs) are similarly expressed by immune cells as detectors of pathogen-associated molecular patterns. Although there is evidence of cross talk between complement and PRR signaling pathways, knowledge of the full potential for C5a-PRR interaction is limited. In this study, we comprehensively investigated how C5a signaling through C5a receptors can modulate diverse PRR-mediated cytokine responses in human primary monocyte-derived macrophages and observed a powerful, concentration-dependent bidirectional effect of C5a on PRR activities. Unexpectedly, C5a synergized with Dectin-1, Mincle, and STING in macrophages to a much greater extent than TLRs. Notably, we also identified that selective Dectin-1 activation using depleted zymosan triggered macrophages to generate cell-intrinsic C5a, which acted on intracellular and cell surface C5aR1, to help sustain mitochondrial ROS generation, up-regulate TNFα production, and enhance fungal killing. This study adds further evidence to the holistic functions of C5a as a central immunomodulator and important orchestrator of pathogen sensing and killing by phagocytes.


Assuntos
Complemento C5a , Lectinas Tipo C , Macrófagos , Humanos , Complemento C5a/metabolismo , Lectinas Tipo C/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Células Mieloides , Fagócitos , Transdução de Sinais
4.
Front Immunol ; 14: 1086673, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36776827

RESUMO

TLQP-21 is a 21-amino acid neuropeptide derived from the VGF precursor protein. TLQP-21 is expressed in the nervous system and neuroendocrine glands, and demonstrates pleiotropic roles including regulating metabolism, nociception and microglial functions. Several possible receptors for TLQP-21 have been identified, with complement C3a receptor (C3aR) being the most commonly reported. However, few studies have characterised the activity of TLQP-21 in immune cells, which represent the major cell type expressing C3aR. In this study, we therefore aimed to define the activity of both human and mouse TLQP-21 on cell signalling in primary human and mouse macrophages. We first confirmed that TLQP-21 induced ERK signalling in CHO cells overexpressing human C3aR, and did not activate human C5aR1 or C5aR2. TLQP-21 mediated ERK signalling was also observed in primary human macrophages. However, the potency for human TLQP-21 was 135,000-fold lower relative to C3a, and only reached 45% at the highest dose tested (10 µM). Unlike in humans, mouse TLQP-21 potently triggered ERK signalling in murine macrophages, reaching near full activation, but at ~10-fold reduced potency compared to C3a. We further confirmed the C3aR dependency of the TLQP-21 activities. Our results reveal significant discrepancy in TLQP-21 C3aR activity between human and murine receptors, with mouse TLQP-21 being consistently more potent than the human counterpart in both systems. Considering the supraphysiological concentrations of hTLQP-21 needed to only partially activate macrophages, it is likely that the actions of TLQP-21, at least in these immune cells, may not be mediated by C3aR in humans.


Assuntos
Macrófagos , Receptores de Complemento , Cricetinae , Humanos , Camundongos , Animais , Cricetulus , Receptores de Complemento/metabolismo , Macrófagos/metabolismo , Microglia/metabolismo , Receptor da Anafilatoxina C5a/metabolismo
5.
Molecules ; 27(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36235117

RESUMO

The protein HFE (homeostatic iron regulator) is a key regulator of iron metabolism, and mutations in HFE underlie the most frequent form of hereditary haemochromatosis (HH-type I). Studies have shown that HFE interacts with transferrin receptor 1 (TFR1), a homodimeric type II transmembrane glycoprotein that is responsible for the cellular uptake of iron via iron-loaded transferrin (holo-transferrin) binding. It has been hypothesised that the HFE/TFR1 interaction serves as a sensor to the level of iron-loaded transferrin in circulation by means of a competition mechanism between HFE and iron-loaded transferrin association with TFR1. To investigate this, a series of peptides based on the helical binding interface between HFE and TFR1 were generated and shown to significantly interfere with the HFE/TFR1 interaction in an in vitro proximity ligation assay. The helical conformation of one of these peptides, corresponding to the α1 and α2 helices of HFE, was stabilised by the introduction of sidechain lactam "staples", but this did not result in an increase in the ability of the peptide to disrupt the HFE/TFR1 interaction. These peptides inhibitors of the protein-protein interaction between HFE and TFR1 are potentially useful tools for the analysis of the functional role of HFE in the regulation of hepcidin expression.


Assuntos
Hemocromatose , Hepcidinas , Hemocromatose/genética , Hemocromatose/metabolismo , Proteína da Hemocromatose/genética , Proteína da Hemocromatose/metabolismo , Hepcidinas/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Ferro/metabolismo , Lactamas , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Peptídeos/metabolismo , Peptídeos/farmacologia , Receptores da Transferrina/metabolismo , Transferrina/metabolismo
6.
Br J Pharmacol ; 179(20): 4878-4896, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35818835

RESUMO

BACKGROUND AND PURPOSE: Over past decades, targeted therapies and immunotherapy have improved survival and reduced the morbidity of patients with BRAF-mutated melanoma. However, drug resistance and relapse hinder overall success. Therefore, there is an urgent need for novel compounds with therapeutic efficacy against BRAF-melanoma. This prompted us to investigate the antiproliferative profile of a tachykinin-peptide from the Octopus kaurna, Octpep-1 in melanoma. EXPERIMENTAL APPROACH: We evaluated the cytotoxicity of Octpep-1 by MTT assay. Mechanistic insights on viability and cellular damage caused by Octpep-1 were gained via flow cytometry and bioenergetics. Structural and pharmacological characterization was conducted by molecular modelling, molecular biology, CRISPR/Cas9 technology, high-throughput mRNA and calcium flux analysis. In vivo efficacy was validated in two independent xerograph animal models (mice and zebrafish). KEY RESULTS: Octpep-1 selectively reduced the proliferative capacity of human melanoma BRAFV600E -mutated cells with minimal effects on fibroblasts. In melanoma-treated cells, Octpep-1 increased ROS with unaltered mitochondrial membrane potential and promoted non-mitochondrial and mitochondrial respiration with inefficient ATP coupling. Molecular modelling revealed that the cytotoxicity of Octpep-1 depends upon the α-helix and polyproline conformation in the C-terminal region of the peptide. A truncated form of the C-terminal end of Octpep-1 displayed enhanced potency and efficacy against melanoma. Octpep-1 reduced the progression of tumours in xenograft melanoma mice and zebrafish. CONCLUSION AND IMPLICATIONS: We unravel the intrinsic anti-tumoural properties of a tachykinin peptide. This peptide mediates the selective cytotoxicity in BRAF-mutated melanoma in vitro and prevents tumour progression in vivo, providing a foundation for a therapy against melanoma.


Assuntos
Antineoplásicos , Melanoma , Trifosfato de Adenosina , Animais , Antineoplásicos/farmacologia , Cálcio , Linhagem Celular Tumoral , Humanos , Melanoma/tratamento farmacológico , Melanoma/patologia , Camundongos , Mutação , Octopodiformes/química , Peptídeos/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/uso terapêutico , RNA Mensageiro , Espécies Reativas de Oxigênio , Taquicininas/genética , Taquicininas/uso terapêutico , Peixe-Zebra/genética
7.
J Immunol ; 208(1): 133-142, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34853076

RESUMO

The anaphylatoxin C5a is core effector of complement activation. C5a exerts potent proinflammatory and immunomodulatory actions through interacting with its C5a receptors, C5aR1 and C5aR2, modulating multiple signaling and functional activities of immune cells. Native C5a contains a large N-linked glycosylation site at Asn64, which accounts for up to 25% of its m.w. To date, the vast majority of published studies examining C5a are performed using Escherichia coli-generated recombinant C5a, which is readily available from numerous commercial suppliers, but lacks this glycosylation moiety. However, a plasma-purified "native" form of C5a is also commercially available. The different size and glycosylation of these two C5a versions could have functional implications. Therefore, the current study aimed to compare recombinant human C5a to purified plasma-derived human C5a in driving the signaling and functional activities of human primary macrophages. We found that both versions of C5a displayed similar potencies at triggering C5aR1- and C5aR2-mediated cell signaling, but elicited distinct functional responses in primary human monocyte-derived macrophages. Multiple commercial sources of recombinant C5a, but not the plasma-purified or a synthetic C5a version, induced human monocyte-derived macrophages to produce IL-6 and IL-10 in a C5a receptor-independent manner, which was driven through Syk and NF-κB signaling and apparently not due to endotoxin contamination. Our results, therefore, offer caution against the sole use of recombinant human C5a, particularly in functional/cytokine assays conducted in human primary immune cells, and suggest studies using recombinant human C5a should be paired with C5aR1 inhibitors or purified/synthetic human C5a to confirm relevant findings.


Assuntos
Complemento C5a/metabolismo , Escherichia coli/metabolismo , Macrófagos/imunologia , Plasma/metabolismo , Células Cultivadas , Complemento C5a/genética , Escherichia coli/genética , Glicosilação , Humanos , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Ativação de Macrófagos , NF-kappa B/metabolismo , Receptor da Anafilatoxina C5a/metabolismo , Proteínas Recombinantes/genética , Transdução de Sinais
8.
Sci Immunol ; 6(66): eabf2489, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34932384

RESUMO

While serum-circulating complement destroys invading pathogens, intracellularly active complement, termed the "complosome," functions as a vital orchestrator of cell-metabolic events underlying T cell effector responses. Whether intracellular complement is also nonredundant for the activity of myeloid immune cells is currently unknown. Here, we show that monocytes and macrophages constitutively express complement component (C) 5 and generate autocrine C5a via formation of an intracellular C5 convertase. Cholesterol crystal sensing by macrophages induced C5aR1 signaling on mitochondrial membranes, which shifted ATP production via reverse electron chain flux toward reactive oxygen species generation and anaerobic glycolysis to favor IL-1ß production, both at the transcriptional level and processing of pro­IL-1ß. Consequently, atherosclerosis-prone mice lacking macrophage-specific C5ar1 had ameliorated cardiovascular disease on a high-cholesterol diet. Conversely, inflammatory gene signatures and IL-1ß produced by cells in unstable atherosclerotic plaques of patients were normalized by a specific cell-permeable C5aR1 antagonist. Deficiency of the macrophage cell-autonomous C5 system also protected mice from crystal nephropathy mediated by folic acid. These data demonstrate the unexpected intracellular formation of a C5 convertase and identify C5aR1 as a direct modulator of mitochondrial function and inflammatory output from myeloid cells. Together, these findings suggest that the complosome is a contributor to the biologic processes underlying sterile inflammation and indicate that targeting this system could be beneficial in macrophage-dependent diseases, such as atherosclerosis.


Assuntos
Inflamação/imunologia , Interleucina-1beta/biossíntese , Macrófagos/imunologia , Receptor da Anafilatoxina C5a/imunologia , Animais , Linhagem Celular , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor da Anafilatoxina C5a/deficiência
9.
J Med Chem ; 64(22): 16598-16608, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34762432

RESUMO

The anaphylatoxin C5a is a complement peptide associated with immune-related disorders. C5a binds with equal potency to two GPCRs, C5aR1 and C5aR2. Multiple C5a peptide agonists have been developed to interrogate the C5a receptor function but none show selectivity for C5aR1. To address these limitations, we developed potent and stable peptide C5aR1 agonists that display no C5aR2 activity and over 1000-fold selectivity for C5aR1 over C3aR. This includes BM213, which induces C5aR1-mediated calcium mobilization and pERK1/2 signaling but not ß-arrestin recruitment, and BM221, which exhibits no signaling bias. Both ligands are functionally similar to C5a in human macrophage cytokine release assays and in a murine in vivo neutrophil mobilization assay. BM213 showed antitumor activity in a mouse model of mammary carcinoma. We anticipate that these C5aR1-selective agonists will be useful research tools to investigate C5aR1 function.


Assuntos
Antineoplásicos/uso terapêutico , Complemento C5a/metabolismo , Neoplasias Mamárias Experimentais/tratamento farmacológico , Receptor da Anafilatoxina C5a/agonistas , Animais , Antineoplásicos/farmacologia , Humanos , Camundongos , Receptor da Anafilatoxina C5a/metabolismo
10.
J Biol Chem ; 297(1): 100834, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34051231

RESUMO

The prevalence of autoimmune diseases is on the rise globally. Currently, autoimmunity presents in over 100 different forms and affects around 9% of the world's population. Current treatments available for autoimmune diseases are inadequate, expensive, and tend to focus on symptom management rather than cure. Clinical trials have shown that live helminthic therapy can decrease chronic inflammation associated with inflammatory bowel disease and other gastrointestinal autoimmune inflammatory conditions. As an alternative and better controlled approach to live infection, we have identified and characterized two peptides, Acan1 and Nak1, from the excretory/secretory component of parasitic hookworms for their therapeutic activity on experimental colitis. We synthesized Acan1 and Nak1 peptides from the Ancylostoma caninum and Necator americanus hookworms and assessed their structures and protective properties in human cell-based assays and in a mouse model of acute colitis. Acan1 and Nak1 displayed anticolitic properties via significantly reducing weight loss and colon atrophy, edema, ulceration, and necrosis in 2,4,6-trinitrobenzene sulfonic acid-exposed mice. These hookworm peptides prevented mucosal loss of goblet cells and preserved intestinal architecture. Acan1 upregulated genes responsible for the repair and restitution of ulcerated epithelium, whereas Nak1 downregulated genes responsible for epithelial cell migration and apoptotic cell signaling within the colon. These peptides were nontoxic and displayed key immunomodulatory functions in human peripheral blood mononuclear cells by suppressing CD4+ T cell proliferation and inhibiting IL-2 and TNF production. We conclude that Acan1 and Nak1 warrant further development as therapeutics for the treatment of autoimmunity, particularly gastrointestinal inflammatory conditions.


Assuntos
Ancylostomatoidea/química , Colite/tratamento farmacológico , Colite/prevenção & controle , Leucócitos/imunologia , Peptídeos/uso terapêutico , Sequência de Aminoácidos , Ancylostoma , Animais , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Mediadores da Inflamação/metabolismo , Intestinos/patologia , Canal de Potássio Kv1.3/antagonistas & inibidores , Canal de Potássio Kv1.3/metabolismo , Leucócitos/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Masculino , Camundongos Endogâmicos C57BL , Necator americanus , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacologia , Análise de Componente Principal , Domínios Proteicos , Dobramento de Proteína , Linfócitos T/citologia , Ácido Trinitrobenzenossulfônico , Xenopus laevis
11.
Expert Opin Drug Discov ; 16(10): 1163-1173, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33914674

RESUMO

Introduction: Animal venoms are a complex mixture of bioactive molecules that have evolved over millions of years for prey capture and defense from predators. Venom consists of many different types of molecules, with disulfide-rich peptides being a major component in most venoms. The study of these potent and highly selective molecules has led to the development of venom-derived drugs for diseases such as type 2 diabetes mellitus and chronic pain. As technologies have improved, more bioactive peptides have been discovered from venomous animals. Many of these molecules may have applications as tools for understanding normal and disease physiology, therapeutics, cosmetics or in agriculture.Areas covered: This article reviews venom-derived drugs approved by the FDA and venom-derived peptides currently in development. It discusses the challenges faced by venom-derived peptide drugs during drug development and the future for venom-derived peptides.Expert opinion: New techniques such as toxin driven discovery are expanding the pipeline of venom-derived peptides. There are many venom-derived peptides currently in preclinical and clinical trials that would have remained undiscovered using traditional approaches. A renewed focus on venoms, with advances in technology, will broaden the diversity of venom-derived peptide therapeutics and expand our knowledge of their molecular targets.


Assuntos
Diabetes Mellitus Tipo 2 , Peçonhas , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Desenvolvimento de Medicamentos , Descoberta de Drogas/métodos , Peptídeos/química , Peptídeos/farmacologia , Peçonhas/química , Peçonhas/farmacologia , Peçonhas/uso terapêutico
12.
Toxins (Basel) ; 13(2)2021 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-33672955

RESUMO

Melanoma is the main cause of skin cancer deaths, with special emphasis in those cases carrying BRAF mutations that trigger the mitogen-activated protein kinases (MAPK) signaling and unrestrained cell proliferation in the absence of mitogens. Current therapies targeting MAPK are hindered by drug resistance and relapse that rely on metabolic rewiring and Akt activation. To identify new drug candidates against melanoma, we investigated the molecular mechanism of action of the Octopus Kaurna-derived peptide, Octpep-1, in human BRAF(V600E) melanoma cells using proteomics and RNAseq coupled with metabolic analysis. Fluorescence microscopy verified that Octpep-1 tagged with fluorescein enters MM96L and NFF cells and distributes preferentially in the perinuclear area of MM96L cells. Proteomics and RNAseq revealed that Octpep-1 targets PI3K/AKT/mTOR signaling in MM96L cells. In addition, Octpep-1 combined with rapamycin (mTORC1 inhibitor) or LY3214996 (ERK1/2 inhibitor) augmented the cytotoxicity against BRAF(V600E) melanoma cells in comparison with the inhibitors or Octpep-1 alone. Octpep-1-treated MM96L cells displayed reduced glycolysis and mitochondrial respiration when combined with LY3214996. Altogether these data support Octpep-1 as an optimal candidate in combination therapies for melanoma BRAF(V600E) mutations.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Melanoma/tratamento farmacológico , Mutação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Sirolimo/farmacologia , Neoplasias Cutâneas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Melanoma/enzimologia , Melanoma/genética , Melanoma/patologia , Transdução de Sinais , Neoplasias Cutâneas/enzimologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia
13.
Biomedicines ; 8(10)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066369

RESUMO

Relaxin-3 is a highly conserved two-chain neuropeptide that acts through its endogenous receptor the Relaxin Family Peptide-3 (RXFP3) receptor. The ligand/receptor system is known to modulate several physiological processes, with changes in food intake and anxiety-levels the most well studied in rodent models. Agonist and antagonist analogues based on the native two-chain peptide are costly to synthesise and not ideal drug leads. Since RXFP3 interacting residues are found in the relaxin B-chain only, this has been the focus of analogue development. The B-chain is unstructured without the A-chain support, but in single-chain variants structure can be induced by dicarba-based helical stapling strategies. Here we investigated whether alternative helical inducing strategies also can enhance structure and activity at RXFP3. Combinations of the helix inducing α-aminoisobutyric acid (Aib) were incorporated into the sequence of the relaxin-3 B-chain. Aib residues at positions 13, 17 and 18 partially reintroduce helicity and activity of the relaxin-3 B-chain, but other positions are generally not suited for modifications. We identify Thr21 as a putative new receptor contact residue important for RXFP3 binding. Cysteine residues were also incorporated into the sequence and cross-linked with dichloroacetone or α, α'-dibromo-m-xylene. However, in contrast to previously reported dicarba variants, neither were found to promote structure and RXFP3 activity.

14.
J Nat Prod ; 83(10): 3030-3040, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-32997497

RESUMO

Plants and their seeds have been shown to be a rich source of cystine-stabilized peptides. Recently a new family of plant seed peptides whose sequences are buried within precursors for seed storage vicilins was identified. Members of this Vicilin-Buried Peptide (VBP) family are found in distantly related plant species including the monocot date palm, as well as dicotyledonous species like pumpkin and sesame. Genetic evidence for their widespread occurrence indicates that they are of ancient origin. Limited structural studies have been conducted on VBP family members, but two members have been shown to adopt a helical hairpin fold. We present an extensive characterization of VBPs using solution NMR spectroscopy, to better understand their structural features. Four peptides were produced by solid phase peptide synthesis and shown to favor a helix-loop-helix hairpin fold, as a result of the I-IV/II-III ladderlike connectivity of their disulfide bonds. Interhelical interactions, including hydrophobic contacts and salt bridges, are critical for the fold stability and control the angle at which the antiparallel α-helices interface. Activities reported for VBPs include trypsin inhibitory activity and inhibition of ribosomal function; however, their diverse structural features despite a common fold suggest that additional bioactivities yet to be revealed are likely.


Assuntos
Dobramento de Proteína , Proteínas de Armazenamento de Sementes/química , Sequência de Aminoácidos , Dissulfetos/química , Sequências Hélice-Alça-Hélice , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Peptídeos/síntese química , Peptídeos/química , Peptídeos/farmacologia , Conformação Proteica em alfa-Hélice , Proteínas de Armazenamento de Sementes/síntese química , Proteínas de Armazenamento de Sementes/farmacologia , Inibidores da Tripsina/farmacologia
15.
Biochem Pharmacol ; 180: 114156, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32682759

RESUMO

The complement fragment C5a is a core effector of complement activation. C5a, acting through its major receptor C5aR1, exerts powerful pro-inflammatory and immunomodulatory functions. Dysregulation of the C5a-C5aR1 axis has been implicated in numerous immune disorders, and the therapeutic inhibition of this axis is therefore imperative for the treatment of these diseases. A myriad of small-molecule C5aR1 inhibitors have been developed and independently characterised over the past two decades, however the pharmacological properties of these compounds has been difficult to directly compare due to the wide discrepancies in the model, read-out, ligand dose and instrumentation implemented across individual studies. Here, we performed a systematic characterisation of the most commonly reported and clinically advanced small-molecule C5aR1 inhibitors (peptidic: PMX53, PMX205 and JPE1375; non-peptide: W545011, NDT9513727, DF2593A and CCX168). Through signalling assays measuring C5aR1-mediated cAMP and ERK1/2 signalling, and ß-arrestin 2 recruitment, this study highlighted the signalling-pathway dependence of the rank order of potencies of the C5aR1 inhibitors. Functional experiments performed in primary human macrophages demonstrated the high insurmountable antagonistic potencies for the peptidic inhibitors as compared to the non-peptide compounds. Finally, wash-out studies provided novel insights into the duration of inhibition of the C5aR1 inhibitors, and confirmed the long-lasting antagonistic properties of PMX53 and CCX168. Overall, this study revealed the potent and prolonged antagonistic activities of selected peptidic C5aR1 inhibitors and the unique pharmacological profile of CCX168, which thus represent ideal candidates to fulfil diverse C5aR1 research and clinical therapeutic needs.


Assuntos
Complemento C5a/antagonistas & inibidores , Complemento C5a/metabolismo , Receptor da Anafilatoxina C5a/antagonistas & inibidores , Receptor da Anafilatoxina C5a/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Compostos de Anilina/metabolismo , Compostos de Anilina/farmacologia , Animais , Células CHO , Complemento C5a/farmacologia , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Ácidos Nipecóticos/metabolismo , Ácidos Nipecóticos/farmacologia , Peptídeos Cíclicos/metabolismo , Peptídeos Cíclicos/farmacologia , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia
16.
J Immunol ; 205(4): 1102-1112, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32611725

RESUMO

The complement activation fragment C5a is a potent proinflammatory mediator that is increasingly recognized as an immune modulator. C5a acts through two C5a receptors, C5aR1 (C5aR, CD88) and C5aR2 (C5L2, GPR77), to powerfully modify multiple aspects of immune cell function. Although C5aR1 is generally acknowledged to be proinflammatory and immune-activating, the potential roles played by C5aR2 remain poorly defined. Despite studies demonstrating C5aR2 can modulate C5aR1 in human cells, it is not yet known whether C5aR2 functionality is limited to, or requires, C5aR1 activation or influences immune cells more broadly. The present study, therefore, aimed to characterize the roles of C5aR2 on the signaling and function of primary human monocyte-derived macrophages, using a C5aR2 agonist (Ac-RHYPYWR-OH; P32) to selectively activate the receptor. We found that although C5aR2 activation with P32 by itself was devoid of any detectable MAPK signaling activities, C5aR2 agonism significantly dampened C5aR1-, C3aR-, and chemokine-like receptor 1 (CMKLR1)-mediated ERK signaling and altered intracellular calcium mobilization mediated by these receptors. Functionally, selective C5aR2 activation also downregulated cytokine production triggered by various TLRs (TLR2, TLR3, TLR4, and TLR7), C-type lectin receptors (Dectin-1, Dectin-2, and Mincle), and the cytosolic DNA sensor stimulator of IFN genes (STING). Surprisingly, activity at the C-type lectin receptors was particularly powerful, with C5aR2 activation reducing Mincle-mediated IL-6 and TNF-α generation by 80-90%. In sum, this study demonstrates that C5aR2 possesses pleiotropic functions in primary human macrophages, highlighting the role of C5aR2 as a powerful regulator of innate immune function.


Assuntos
Macrófagos/metabolismo , Receptor da Anafilatoxina C5a/metabolismo , Transdução de Sinais/fisiologia , Células Cultivadas , Humanos , Interferons/metabolismo , Interleucina-6/metabolismo , Lectinas Tipo C/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Monócitos/metabolismo , Receptores de Quimiocinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
17.
ACS Chem Biol ; 13(6): 1577-1587, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29746088

RESUMO

α-Conotoxins are disulfide-bonded peptides from cone snail venoms and are characterized by their affinity for nicotinic acetylcholine receptors (nAChR). Several α-conotoxins with distinct selectivity for nAChR subtypes have been identified as potent analgesics in animal models of chronic pain. However, a number of α-conotoxins have been shown to inhibit N-type calcium channel currents in rodent dissociated dorsal root ganglion (DRG) neurons via activation of G protein-coupled GABAB receptors (GABABR). Therefore, it is unclear whether activation of GABABR or inhibition of α9α10 nAChRs is the analgesic mechanism. To investigate the mechanisms by which α-conotoxins provide analgesia, we synthesized a suite of Vc1.1 analogues where all residues, except the conserved cysteines, in Vc1.1 were individually replaced by alanine (A), lysine (K), and aspartic acid (D). Our results show that the amino acids in the first loop play an important role in binding of the peptide to the receptor, whereas those in the second loop play an important role for the selectivity of the peptide for the GABABR over α9α10 nAChRs. We designed a cVc1.1 analogue that is >8000-fold selective for GABABR-mediated inhibition of high voltage-activated (HVA) calcium channels over α9α10 nAChRs and show that it is analgesic in a mouse model of chronic visceral hypersensitivity (CVH). cVc1.1[D11A,E14A] caused dose-dependent inhibition of colonic nociceptors with greater efficacy in ex vivo CVH colonic nociceptors relative to healthy colonic nociceptors. These findings suggest that selectively targeting GABABR-mediated HVA calcium channel inhibition by α-conotoxins could be effective for the treatment of chronic visceral pain.


Assuntos
Analgésicos/uso terapêutico , Bloqueadores dos Canais de Cálcio/uso terapêutico , Conotoxinas/uso terapêutico , Dor/tratamento farmacológico , Analgésicos/síntese química , Analgésicos/química , Animais , Bloqueadores dos Canais de Cálcio/síntese química , Bloqueadores dos Canais de Cálcio/química , Canais de Cálcio Tipo N/metabolismo , Conotoxinas/síntese química , Conotoxinas/química , Masculino , Camundongos Endogâmicos C57BL , Estrutura Molecular , Antagonistas Nicotínicos/síntese química , Antagonistas Nicotínicos/química , Antagonistas Nicotínicos/uso terapêutico , Ratos Wistar , Receptores de GABA-B/metabolismo , Receptores Nicotínicos/metabolismo , Relação Estrutura-Atividade , Xenopus laevis
18.
J Clin Invest ; 128(4): 1569-1580, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29528337

RESUMO

Polypeptide vaccines effectively activate human T cells but suffer from poor biological stability, which confines both transport logistics and in vivo therapeutic activity. Synthetic biology has the potential to address these limitations through the generation of highly stable antigenic "mimics" using subunits that do not exist in the natural world. We developed a platform based on D-amino acid combinatorial chemistry and used this platform to reverse engineer a fully artificial CD8+ T cell agonist that mirrored the immunogenicity profile of a native epitope blueprint from influenza virus. This nonnatural peptide was highly stable in human serum and gastric acid, reflecting an intrinsic resistance to physical and enzymatic degradation. In vitro, the synthetic agonist stimulated and expanded an archetypal repertoire of polyfunctional human influenza virus-specific CD8+ T cells. In vivo, specific responses were elicited in naive humanized mice by subcutaneous vaccination, conferring protection from subsequent lethal influenza challenge. Moreover, the synthetic agonist was immunogenic after oral administration. This proof-of-concept study highlights the power of synthetic biology to expand the horizons of vaccine design and therapeutic delivery.


Assuntos
Materiais Biomiméticos , Vírus da Influenza A/imunologia , Vacinas contra Influenza , Infecções por Orthomyxoviridae , Biblioteca de Peptídeos , Vacinação , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Células Cultivadas , Humanos , Vacinas contra Influenza/química , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/farmacologia , Camundongos , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/prevenção & controle
19.
Toxins (Basel) ; 9(11)2017 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-29144441

RESUMO

Chronic pain is a complex and debilitating condition associated with a large personal and socioeconomic burden. Current pharmacological approaches to treating chronic pain such as opioids, antidepressants and anticonvulsants exhibit limited efficacy in many patients and are associated with dose-limiting side effects that hinder their clinical use. Therefore, improved strategies for the pharmacological treatment of pathological pain are urgently needed. G-protein coupled receptors (GPCRs) are ubiquitously expressed on the surface of cells and act to transduce extracellular signals and regulate physiological processes. In the context of pain, numerous and diverse families of GPCRs expressed in pain pathways regulate most aspects of physiological and pathological pain and are thus implicated as potential targets for therapy of chronic pain. In the search for novel compounds that produce analgesia via GPCR modulation, animal venoms offer an enormous and virtually untapped source of potent and selective peptide molecules. While many venom peptides target voltage-gated and ligand-gated ion channels to inhibit neuronal excitability and blunt synaptic transmission of pain signals, only a small proportion are known to interact with GPCRs. Of these, only a few have shown analgesic potential in vivo. Here we review the current state of knowledge regarding venom peptides that target GPCRs to produce analgesia, and their development as therapeutic compounds.


Assuntos
Analgésicos/farmacologia , Dor Crônica/metabolismo , Peptídeos/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Peçonhas/farmacologia , Animais , Dor Crônica/tratamento farmacológico , Humanos
20.
Adv Exp Med Biol ; 1030: 229-254, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29081056

RESUMO

The venom from carnivorous marine snails of the Conus genus is a cocktail of peptides, proteins and small molecules that is used by the snail to capture prey. The peptides within this venom have been the focus of many drug design efforts as they exhibit potent and selective targeting of therapeutically important receptors, transporters and channels, particularly in relation to the treatment of chronic pain. The most well studied class of Conus peptides are the conotoxins, which are disulfide-rich and typically have well-defined three dimensional structures that are important for both biological activity and stability. In this chapter we discuss the molecular engineering approaches that have been used to modify these conotoxins to improve their pharmacological properties, including potency, selectivity, stability, and minimisation of the bioactive pharmacophore. These engineering strategies include sidechain modifications, disulfide substitution and deletion, backbone cyclisation, and truncations. Several of these re-engineered conotoxins have progressed to pre-clinical or clinical studies, which demonstrates the promise of using these molecular engineering techniques for the development of therapeutic leads.


Assuntos
Conotoxinas/metabolismo , Caramujo Conus/metabolismo , Peptídeos/metabolismo , Engenharia de Proteínas/métodos , Sequência de Aminoácidos , Animais , Dor Crônica/tratamento farmacológico , Conotoxinas/química , Conotoxinas/genética , Ciclização , Desenho de Fármacos , Estabilidade de Medicamentos , Humanos , Peptídeos/genética , Peptídeos/uso terapêutico , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA