Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 1890, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732401

RESUMO

Adeno-associated viral (AAV) vector suspensions produced in either human derived HEK cells or in Spodoptera frugiperda (Sf9) insect cells differ in terms of residual host cell components as well as species-specific post-translational modifications displayed on the AAV capsid proteins. Here we analysed the impact of these differences on the immunogenic properties of the vector. We stimulated human plasmacytoid dendritic cells with various lots of HEK cell-produced and Sf9 cell-produced AAV-CMV-eGFP vectors derived from different manufacturers. We found that AAV8-CMV-eGFP as well as AAV2-CMV-eGFP vectors induced lot-specific but not production platform-specific or manufacturer-specific inflammatory cytokine responses. These could be reduced or abolished by blocking toll-like receptor 9 signalling or by enzymatically reducing DNA in the vector lots using DNase. Successful HEK cell transduction by DNase-treated AAV lots and DNA analyses demonstrated that DNase did not affect the integrity of the vector but degraded extra-viral DNA. We conclude that both HEK- and Sf9-cell derived AAV preparations can contain immunogenic extra-viral DNA components which can trigger lot-specific inflammatory immune responses. This suggests that improved strategies to remove extra-viral DNA impurities may be instrumental in reducing the immunogenic properties of AAV vector preparations.


Assuntos
Infecções por Citomegalovirus , DNA Viral , Humanos , Dependovirus/genética , Vetores Genéticos/genética , Receptor Toll-Like 9/genética , Imunidade Inata , Células Dendríticas , Desoxirribonucleases/genética , Transdução Genética
2.
Clin Cancer Res ; 27(23): 6514-6528, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34479957

RESUMO

PURPOSE: Glioblastoma (GBM) is an incurable primary brain tumor that has not benefited from immunotherapy to date. More than 90% of GBM expresses the tryptophan (Trp) metabolic enzyme, indoleamine 2,3-dioxygenase 1 (IDO). This observation supported the historical hypothesis that IDO suppresses the antitumor immune response solely through a mechanism that requires intratumoral Trp depletion. However, recent findings led us to investigate the alternative hypothesis that IDO suppresses the anti-GBM immune response independent of its association with Trp metabolism. EXPERIMENTAL DESIGN: IDO-deficient GBM cell lines reconstituted with IDO wild-type or IDO enzyme-null cDNA were created and validated in vitro and in vivo. Microarray analysis was conducted to search for genes that IDO regulates, followed by the analysis of human GBM cell lines, patient GBM and plasma, and The Cancer Genome Atlas (TCGA) database. Ex vivo cell coculture assays, syngeneic and humanized mouse GBM models, were used to test the alternative hypothesis. RESULTS: Nonenzymic tumor cell IDO activity decreased the survival of experimental animals and increased the expression of complement factor H (CFH) and its isoform, factor H like protein 1 (FHL-1) in human GBM. Tumor cell IDO increased CFH and FHL-1 expression independent of Trp metabolism. Increased intratumoral CFH and FHL-1 levels were associated with poorer survival among patients with glioma. Similar to IDO effects, GBM cell FHL-1 expression increased intratumoral regulatory T cells (Treg) and myeloid-derived suppressor cells while it decreased overall survival in mice with GBM. CONCLUSIONS: Our study reveals a nonmetabolic IDO-mediated enhancement of CFH expression and provides a new therapeutic target for patients with GBM.


Assuntos
Glioblastoma , Glioma , Animais , Glioma/tratamento farmacológico , Humanos , Terapia de Imunossupressão , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Camundongos , Triptofano/farmacologia
3.
Cell Mol Life Sci ; 78(10): 4487-4505, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33751148

RESUMO

Age-related macular degeneration (AMD) is a chronic and progressive degenerative disease of the retina, which culminates in blindness and affects mainly the elderly population. AMD pathogenesis and pathophysiology are incredibly complex due to the structural and cellular complexity of the retina, and the variety of risk factors and molecular mechanisms that contribute to disease onset and progression. AMD is driven by a combination of genetic predisposition, natural ageing changes and lifestyle factors, such as smoking or nutritional intake. The mechanism by which these risk factors interact and converge towards AMD are not fully understood and therefore drug discovery is challenging, where no therapeutic attempt has been fully effective thus far. Genetic and molecular studies have identified the complement system as an important player in AMD. Indeed, many of the genetic risk variants cluster in genes of the alternative pathway of the complement system and complement activation products are elevated in AMD patients. Nevertheless, attempts in treating AMD via complement regulators have not yet been successful, suggesting a level of complexity that could not be predicted only from a genetic point of view. In this review, we will explore the role of complement system in AMD development and in the main molecular and cellular features of AMD, including complement activation itself, inflammation, ECM stability, energy metabolism and oxidative stress.


Assuntos
Envelhecimento , Ativação do Complemento , Proteínas do Sistema Complemento/metabolismo , Inflamação/fisiopatologia , Degeneração Macular/patologia , Estresse Oxidativo , Animais , Predisposição Genética para Doença , Humanos , Degeneração Macular/imunologia , Degeneração Macular/metabolismo , Fatores de Risco
4.
Exp Eye Res ; 201: 108324, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33098886

RESUMO

Although the triggers causing angiogenesis in the context of neovascular age-related macular degeneration (nAMD) are not fully understood, oxidative stress is likely involved. Oxidative stress in the eye can occur through exposure of macular tissues to sunlight and local or systemic exposure to oxidative stressors associated with environmental or lifestyle factors. Because trace elements have been implicated as regulators of oxidative stress and cellular antioxidant defense mechanisms, we hypothesized that they may play a role as a risk factor, modifying the progression toward nAMD. Herein, we determined whether levels of human plasma trace elements are different in 236 individuals with nAMD compared to 236 age-matched controls without AMD. Plasma levels of 16 trace elements including arsenic, barium, calcium, cadmium, cobalt, chromium, copper, iron, magnesium, manganese, molybdenum, lead, antimony, selenium, vanadium and zinc were measured using inductively coupled plasma mass spectrometry. Associations of trace elements with demographic, environmental and lifestyle factors and AMD-associated genetic variants were assessed. Elevated levels of barium and cadmium and reduced levels of chromium were observed in nAMD patients compared to controls. Mean plasma concentrations of barium were 1.35 µg/L (standard deviation [SD] 0.71) in nAMD and 1.15 µg/L (SD 0.63) in controls (P = 0.001). Mean levels of chromium were 0.37 µg/L (SD 0.22) in nAMD and 0.46 µg/L (SD 0.34) in controls (P = 0.001). Median levels for cadmium, which were not normally distributed, were 0.016 µg/L (interquartile range [IQR] 0.001-0.026) in nAMD and 0.012 µg/L (IQR 0.001-0.022) in controls (P = 0.002). Comparison of the Spearman's correlation coefficients between nAMD patients and controls identified a difference in correlations for 8 trace elements. Cadmium levels were associated with the smoking status (P < 0.001), while barium levels showed a trend of association with the usage of antihypertensive drugs. None of the AMD-associated genetic variants were associated with any trace element levels. In conclusion, in this case-control study we detected elevated plasma levels of barium and cadmium and reduced plasma levels of chromium in nAMD patients. An imbalance in plasma trace elements, which is most likely driven by environmental and lifestyle factors, might have a role in the pathogenesis of AMD. These trace elements may be incorporated as biomarkers into models for prediction of disease risk and progression. Additionally, population-based preventive strategies to decrease Cd exposure, especially by the cessation of smoking, could potentially reduce the burden of nAMD. Future studies are warranted to investigate whether supplementation of Cr would have a beneficial effect on nAMD.


Assuntos
Plasma/metabolismo , Degeneração Macular Exsudativa/sangue , Idoso , Biomarcadores/sangue , Feminino , Humanos , Masculino , Estudos Retrospectivos , Oligoelementos/sangue
5.
Clin Epigenetics ; 11(1): 6, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30642396

RESUMO

BACKGROUND: Age-related macular degeneration (AMD) is a degenerative disorder of the central retina and the foremost cause of blindness. The retinal pigment epithelium (RPE) is a primary site of disease pathogenesis. The genetic basis of AMD is relatively well understood; however, this knowledge is yet to yield a treatment for the most prevalent non-neovascular disease forms. Therefore, tissue-specific epigenetic mechanisms of gene regulation are of considerable interest in AMD. We aimed to identify differentially methylated genes associated with AMD in the RPE and differentiate local DNA methylation aberrations from global DNA methylation changes, as local DNA methylation changes may be more amenable to therapeutic manipulation. METHODS: Epigenome-wide association study and targeted gene expression profiling were carried out in RPE cells from eyes of human donors. We performed genome-wide DNA methylation profiling (Illumina 450k BeadChip array) on RPE cells from 44 human donor eyes (25 AMD and 19 normal controls). We validated the findings using bisulfite pyrosequencing in 55 RPE samples (30 AMD and 25 normal controls) including technical (n = 38) and independent replicate samples (n = 17). Long interspersed nucleotide element 1 (LINE-1) analysis was then applied to assess global DNA methylation changes in the RPE. RT-qPCR on independent donor RPE samples was performed to assess gene expression changes. RESULTS: Genome-wide DNA methylation profiling identified differential methylation of multiple loci including the SKI proto-oncogene (SKI) (p = 1.18 × 10-9), general transcription factor IIH subunit H4 (GTF2H4) (p = 7.03 × 10-7), and Tenascin X (TNXB) (p = 6.30 × 10-6) genes in AMD. Bisulfite pyrosequencing validated the differentially methylated locus cg18934822 in SKI, and cg22508626 within GTF2H4, and excluded global DNA methylation changes in the RPE in AMD. We further demonstrated the differential expression of SKI, GTF2H4, and TNXB in the RPE of independent AMD donors. CONCLUSIONS: We report the largest genome-wide methylation analysis of RPE in AMD along with associated gene expression changes to date, for the first-time reaching genome-wide significance, and identified novel targets for functional and future therapeutic intervention studies. The novel differentially methylated genes SKI and GTF2H4 have not been previously associated with AMD, and regulate disease pathways implicated in AMD, including TGF beta signaling (SKI) and transcription-dependent DNA repair mechanisms (GTF2H4).


Assuntos
Metilação de DNA , Proteínas de Ligação a DNA/genética , Degeneração Macular/genética , Proteínas Proto-Oncogênicas/genética , Tenascina/genética , Fatores Genéricos de Transcrição/genética , Fatores de Transcrição TFII/genética , Sequenciamento Completo do Genoma/métodos , Idoso , Autopsia , Estudos de Casos e Controles , Epigênese Genética , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Estudos de Associação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Especificidade de Órgãos , Proto-Oncogene Mas , Epitélio Pigmentado da Retina/química
6.
Cell Mol Life Sci ; 74(9): 1605-1624, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27942748

RESUMO

Complement is the major humoral component of the innate immune system. It recognizes pathogen- and damage-associated molecular patterns, and initiates the immune response in coordination with innate and adaptive immunity. When activated, the complement system unleashes powerful cytotoxic and inflammatory mechanisms, and thus its tight control is crucial to prevent damage to host tissues and allow restoration of immune homeostasis. Factor H is the major soluble inhibitor of complement, where its binding to self markers (i.e., particular glycan structures) prevents complement activation and amplification on host surfaces. Not surprisingly, mutations and polymorphisms that affect recognition of self by factor H are associated with diseases of complement dysregulation, such as age-related macular degeneration and atypical haemolytic uremic syndrome. In addition, pathogens (i.e., non-self) and cancer cells (i.e., altered-self) can hijack factor H to evade the immune response. Here we review recent (and not so recent) literature on the structure and function of factor H, including the emerging roles of this protein in the pathophysiology of infectious diseases and cancer.


Assuntos
Fator H do Complemento/metabolismo , Evasão da Resposta Imune , Imunidade Inata , Animais , Fator H do Complemento/química , Doença , Humanos , Polissacarídeos/metabolismo , Ligação Proteica
7.
Invest Ophthalmol Vis Sci ; 57(15): 6568-6579, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27918831

RESUMO

Purpose: To determine to which extent inflammatory cytokines affect chemokine secretion by primary human choroidal melanocytes (HCMs), their capacity to attract monocytes, and whether HCMs are able to influence the proliferation of activated T cells. Methods: Primary cultures of HCMs were established from eyes of 13 donors. Human choroidal melanocytes were stimulated with IFN-γ and TNF-α or with supernatant from activated T cells (T-cell-conditioned media [TCM]). Gene expression analysis was performed by using microarrays. Protein levels were quantified with ELISA or cytometric bead array. Supernatants of HCMs were assessed for the capability to attract monocytes in a transwell plate. Proliferation of activated T cells was assessed in a direct coculture with HCMs by a [3H]-thymidine incorporation assay. Results: Stimulation of HCMs with TCM or IFN-γ and TNF-α resulted in increased expression and secretion of CXCL8, CXCL9, CXCL10, CXCL11, CCL2, CCL5 and intercellular adhesion molecule 1. Vascular endothelial growth factor and monocyte migration inhibitory factor were constitutively expressed without changes in response to proinflammatory cytokines. Supernatants derived from unstimulated cultures of 10 HCM donors induced a high initial level of monocyte migration, which decreased upon stimulation with either TCM or IFN-γ and TNF-α. The supernatants from three HCM donors initially showed a low level of monocyte attraction, which increased after exposure to proinflammatory cytokines. Direct coculture of HCMs with T cells resulted in inhibition of T-cell proliferation. Conclusions: These results showed that normal and activated HCMs are immunologically active by secreting chemokines, and that HCMs are able to attract monocytes in addition to inhibiting T-cell proliferation.


Assuntos
Quimiocina CXCL9/metabolismo , Corioide/patologia , Citocinas/metabolismo , Melanócitos/patologia , Melanoma/patologia , Monócitos/patologia , Neoplasias Uveais/patologia , Adolescente , Adulto , Idoso , Movimento Celular , Proliferação de Células , Corioide/metabolismo , Meios de Cultivo Condicionados , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Melanoma/metabolismo , Pessoa de Meia-Idade , Fotomicrografia , Células Tumorais Cultivadas , Neoplasias Uveais/metabolismo , Adulto Jovem
8.
PLoS One ; 11(1): e0147576, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26794210

RESUMO

Age-related cataract formation is the primary cause of blindness worldwide and although treatable by surgical removal of the lens the majority of sufferers have neither the finances nor access to the medical facilities required. Therefore, a better understanding of the pathogenesis of cataract may identify new therapeutic targets to prevent or slow its progression. Cataract incidence is strongly correlated with age and cigarette smoking, factors that are often associated with accumulation of metal ions in other tissues. Therefore this study evaluated the age-related changes in 14 metal ions in 32 post mortem human lenses without known cataract from donors of 11 to 82 years of age by inductively coupled plasma mass spectrometry; smoking-related changes in 10 smokers verses 14 non-smokers were also analysed. A significant age-related increase in selenium and decrease in copper ions was observed for the first time in the lens tissue, where cadmium ion levels were also increased as has been seen previously. Aluminium and vanadium ions were found to be increased in smokers compared to non-smokers (an analysis that has only been carried out before in lenses with cataract). These changes in metal ions, i.e. that occur as a consequence of normal ageing and of smoking, could contribute to cataract formation via induction of oxidative stress pathways, modulation of extracellular matrix structure/function and cellular toxicity. Thus, this study has identified novel changes in metal ions in human lens that could potentially drive the pathology of cataract formation.


Assuntos
Envelhecimento/patologia , Catarata/etiologia , Catarata/metabolismo , Cristalino/metabolismo , Metais/metabolismo , Fumar/efeitos adversos , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Criança , Humanos , Cristalino/efeitos dos fármacos , Espectrometria de Massas , Pessoa de Meia-Idade , Adulto Jovem
9.
J Exp Med ; 204(10): 2277-83, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17893204

RESUMO

Nearly 50 million people worldwide suffer from age-related macular degeneration (AMD), which causes severe loss of central vision. A single-nucleotide polymorphism in the gene for the complement regulator factor H (FH), which causes a Tyr-to-His substitution at position 402, is linked to approximately 50% of attributable risks for AMD. We present the crystal structure of the region of FH containing the polymorphic amino acid His402 in complex with an analogue of the glycosaminoglycans (GAGs) that localize the complement regulator on the cell surface. The structure demonstrates direct coordination of ligand by the disease-associated polymorphic residue, providing a molecular explanation of the genetic observation. This glycan-binding site occupies the center of an extended interaction groove on the regulator's surface, implying multivalent binding of sulfated GAGs. This finding is confirmed by structure-based site-directed mutagenesis, nuclear magnetic resonance-monitored binding experiments performed for both H402 and Y402 variants with this and another model GAG, and analysis of an extended GAG-FH complex.


Assuntos
Envelhecimento/fisiologia , Fator H do Complemento/química , Fator H do Complemento/metabolismo , Sítios de Ligação , Fator H do Complemento/genética , Cristalografia por Raios X , Produtos do Gene gag/química , Produtos do Gene gag/genética , Produtos do Gene gag/metabolismo , Ligantes , Modelos Moleculares , Mutação/genética , Polissacarídeos/química , Polissacarídeos/metabolismo , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Sacarose/análogos & derivados , Sacarose/química , Sacarose/metabolismo , Propriedades de Superfície
10.
J Biol Chem ; 282(15): 10894-900, 2007 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-17293598

RESUMO

Recently, a polymorphism in the complement regulator factor H (FH) gene has been associated with age-related macular degeneration. When histidine instead of tyrosine is present at position 384 in the seventh complement control protein (CCP) domain of FH, the risk for age-related macular degeneration is increased. It was recently shown that these allotypic variants of FH, in the context of a recombinant construct corresponding to CCPs 6-8, recognize polyanionic structures differently, which may lead to altered regulation of the alternative pathway of complement. We show now that His-384, corresponding to the risk allele, binds C-reactive protein (CRP) poorly compared with the Tyr-384 form. We also found that C1q and phosphorylcholine do not compete with FH for binding to C-reactive protein. The interaction with extracellular matrix protein fibromodulin, which we now show to be mediated, at least in part, by CCP6-8 of FH, occurs via the polypeptide of fibromodulin and not through its glycosaminoglycan modifications. The Tyr-384 variant of FH bound fibromodulin better than the His-384 form. Furthermore, we find that CCP6-8 is able to interact with DNA and necrotic cells, but in contrast the His-384 allotype binds these ligands more strongly than the Tyr-384 variant. The variations in binding affinity of the two alleles indicate that complement activation and local inflammation in response to different targets will differ between His/His and Tyr/Tyr homozygotes.


Assuntos
Proteína C-Reativa/metabolismo , Fator H do Complemento/metabolismo , DNA/genética , Proteínas da Matriz Extracelular/metabolismo , Histidina/metabolismo , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Proteoglicanas/metabolismo , Processamento Alternativo , Linhagem Celular , Fator H do Complemento/genética , Fibromodulina , Histidina/genética , Humanos , Degeneração Macular/genética , Necrose , Ligação Proteica , Ressonância de Plasmônio de Superfície , Tirosina/genética , Tirosina/metabolismo
11.
Crit Care ; 10(5): R128, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16965618

RESUMO

INTRODUCTION: Cardiac troponin T (cTnT) has been used to assess prevalence of myocardial injury in critically ill children. The majority of studies investigated patients undergoing cardiac surgery. Myocardial injury has been associated with increased mortality. Our objectives were to investigate whether cTnT levels are elevated in infants without congenital heart disease admitted to the paediatric intensive care unit (PICU) and whether levels are associated with increased disease severity. METHODS: We measured cTnT in consecutive infants (<12 months old) without congenital heart disease admitted to the PICU and healthy infants. The Paediatric Index of Mortality (PIM) score was determined in patients on the PICU. RESULTS: We recruited 107 infants: 47 infants admitted to the PICU and 60 healthy controls. Controls were, with a median (interquartile range (IQR)) age of 20 (12 to 34) weeks, significantly older than cases, with a median age of 6.5 (0.3 to 20.6) weeks. CTnT levels were, with a median (IQR) of 18 (10 to 60) pg/ml, significantly higher in admissions to the PICU than in controls, with a median level of 10 (10 to 10) pg/ml (95th centile of 20 pg/ml) (p < 0.001). There was a significant positive correlation (r = 0.41, p = 0.004) between PIM score and cTnT levels. Admissions under one month old had higher cTnT levels than older patients (p = 0.013) but the PIM score was not significantly different between them. When corrected for age and weight the correlation of PIM and cTnT was no longer significant. CONCLUSION: Infants on the PICU in the neonatal period have higher cTnT levels compared to older infants despite not having more severe disease.


Assuntos
Traumatismos Cardíacos/patologia , Unidades de Terapia Intensiva Pediátrica , Miocárdio/metabolismo , Ventiladores Mecânicos , Biomarcadores/sangue , Cardiomiopatias/sangue , Cardiomiopatias/diagnóstico , Estudos de Casos e Controles , Feminino , Traumatismos Cardíacos/sangue , Humanos , Lactente , Recém-Nascido , Masculino , Miocárdio/patologia , Troponina T/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA