Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ann Rheum Dis ; 81(2): 214-224, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34844926

RESUMO

OBJECTIVE: We aimed to understand the role of the transcriptional co-factor Yes-associated protein (Yap) in the molecular pathway underpinning the pathogenic transformation of synovial fibroblasts (SF) in rheumatoid arthritis (RA) to become invasive and cause joint destruction. METHODS: Synovium from patients with RA and mice with antigen-induced arthritis (AIA) was analysed by immunostaining and qRT-PCR. SF were targeted using Pdgfrα-CreER and Gdf5-Cre mice, crossed with fluorescent reporters for cell tracing and Yap-flox mice for conditional Yap ablation. Fibroblast phenotypes were analysed by flow cytometry, and arthritis severity was assessed by histology. Yap activation was detected using Yap-Tead reporter cells and Yap-Snail interaction by proximity ligation assay. SF invasiveness was analysed using matrigel-coated transwells. RESULTS: Yap, its binding partner Snail and downstream target connective tissue growth factor were upregulated in hyperplastic human RA and in mouse AIA synovium, with Yap detected in SF but not macrophages. Lineage tracing showed polyclonal expansion of Pdgfrα-expressing SF during AIA, with predominant expansion of the Gdf5-lineage SF subpopulation descending from the embryonic joint interzone. Gdf5-lineage SF showed increased expression of Yap and adopted an erosive phenotype (podoplanin+Thy-1 cell surface antigen-), invading cartilage and bone. Conditional ablation of Yap in Gdf5-lineage cells or Pdgfrα-expressing fibroblasts ameliorated AIA. Interleukin (IL)-6, but not tumour necrosis factor alpha (TNF-α) or IL-1ß, Jak-dependently activated Yap and induced Yap-Snail interaction. SF invasiveness induced by IL-6 stimulation or Snail overexpression was prevented by Yap knockdown, showing a critical role for Yap in SF transformation in RA. CONCLUSIONS: Our findings uncover the IL-6-Yap-Snail signalling axis in pathogenic SF in inflammatory arthritis.


Assuntos
Artrite Reumatoide/patologia , Fibroblastos/patologia , Membrana Sinovial/patologia , Proteínas de Sinalização YAP/metabolismo , Animais , Artrite Experimental/patologia , Artrite Reumatoide/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Humanos , Interleucina-6/metabolismo , Camundongos , Transdução de Sinais/fisiologia , Fatores de Transcrição da Família Snail/metabolismo , Membrana Sinovial/metabolismo
2.
Cells ; 10(8)2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34440768

RESUMO

Human umbilical cord (hUC)- or bone marrow (hBM)-derived mesenchymal stromal cells (MSCs) were evaluated as an allogeneic source of cells for cartilage repair. We aimed to determine if they could enhance healing of chondral defects with or without the recruitment of endogenous cells. hMSCs were applied into a focal joint surface injury in knees of adult mice expressing tdTomato fluorescent protein in cells descending from Gdf5-expressing embryonic joint interzone cells. Three experimental groups were used: (i) hUC-MSCs, (ii) hBM-MSCs and (iii) PBS (vehicle) without cells. Cartilage repair was assessed after 8 weeks and tdTomato-expressing cells were detected by immunostaining. Plasma levels of pro-inflammatory mediators and other markers were measured by electrochemiluminescence. Both hUC-MSC (n = 14, p = 0.009) and hBM-MSC (n = 13, p = 0.006) treatment groups had significantly improved cartilage repair compared to controls (n = 18). While hMSCs were not detectable in the repair tissue at 8 weeks post-implantation, increased endogenous Gdf5-lineage cells were detected in repair tissue of hUC-MSC-treated mice. This xenogeneic study indicates that hMSCs enhance intrinsic cartilage repair mechanisms in mice. Hence, hMSCs, particularly the more proliferative hUC-MSCs, could represent an attractive allogeneic cell population for treating patients with chondral defects and perhaps prevent the onset and progression of osteoarthritis.


Assuntos
Transplante de Medula Óssea , Cartilagem Articular/patologia , Condrogênese , Artropatias/cirurgia , Transplante de Células-Tronco Mesenquimais , Cicatrização , Adulto , Animais , Reatores Biológicos , Cartilagem Articular/lesões , Cartilagem Articular/metabolismo , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Mediadores da Inflamação/sangue , Artropatias/metabolismo , Artropatias/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Gravidez , Transplante Heterólogo , Cordão Umbilical/citologia , Adulto Jovem
3.
Nat Commun ; 8: 15040, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28508891

RESUMO

The stem cells that safeguard synovial joints in adulthood are undefined. Studies on mesenchymal stromal/stem cells (MSCs) have mainly focused on bone marrow. Here we show that lineage tracing of Gdf5-expressing joint interzone cells identifies in adult mouse synovium an MSC population largely negative for the skeletal stem cell markers Nestin-GFP, Leptin receptor and Gremlin1. Following cartilage injury, Gdf5-lineage cells underpin synovial hyperplasia through proliferation, are recruited to a Nestin-GFPhigh perivascular population, and contribute to cartilage repair. The transcriptional co-factor Yap is upregulated after injury, and its conditional ablation in Gdf5-lineage cells prevents synovial lining hyperplasia and decreases contribution of Gdf5-lineage cells to cartilage repair. Cultured Gdf5-lineage cells exhibit progenitor activity for stable chondrocytes and are able to self-organize three-dimensionally to form a synovial lining-like layer. Finally, human synovial MSCs transduced with Bmp7 display morphogenetic properties by patterning a joint-like organ in vivo. Our findings further the understanding of the skeletal stem/progenitor cells in adult life.


Assuntos
Cartilagem Articular/fisiologia , Condrócitos/fisiologia , Células-Tronco Mesenquimais/fisiologia , Regeneração/fisiologia , Membrana Sinovial/citologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Animais , Cartilagem Articular/citologia , Cartilagem Articular/lesões , Proteínas de Ciclo Celular , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Feminino , Fator 5 de Diferenciação de Crescimento/metabolismo , Humanos , Hiperplasia/fisiopatologia , Artropatias/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Morfogênese/fisiologia , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Membrana Sinovial/lesões , Membrana Sinovial/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA