Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
iScience ; 26(10): 107910, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37790272

RESUMO

Aluminum (Al)-tolerant phosphobacteria enhance plant growth in acidic soils by improving Al complexing and phosphorus (P) availability. However, the impact of Al stress and P deficiency on bacterial biochemistry and physiology remains unclear. We investigated the single and mutual effects of Al stress (10 mM) and P deficiency (0.05 mM) on the proteome of three aluminum-tolerant phosphobacteria: Enterobacter sp. 198, Enterobacter sp. RJAL6, and Klebsiella sp. RCJ4. Cultivated under varying conditions, P deficiency upregulated P metabolism proteins while Al exposure downregulated iron-sulfur and heme-containing proteins and upregulated iron acquisition proteins. This demonstrated that Al influence on iron homeostasis and bacterial central metabolism. This study offers crucial insights into bacterial behavior in acidic soils, benefiting the development of bioinoculants for crops facing Al toxicity and P deficiency. This investigation marks the first proteomic study on the interaction between high Al and P deficiency in acid soils-adapted bacteria.

2.
Cancers (Basel) ; 14(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36077851

RESUMO

BACKGROUND: Gastric cancer, the fifth most common cancer worldwide, is mainly linked to Helicobacter pylori infection. H. pylori induces chronic inflammation of the gastric mucosa associated with high oxidative stress. Our study aimed at assessing the implication of Nrf2, a major regulator of cellular redox homeostasis, in H. pylori-induced gastric carcinogenesis. METHODS: Using three different gastric epithelial cell lines, a non-cancerous (HFE-145) and two different subtypes of gastric cancer (AGS and MKN74), we analyzed the modulation of Nrf2 expression over time. After invalidation of Nrf2 by CRISPR-cas9, we assessed its role in H. pylori-induced epithelial-to-mesenchymal transition (EMT). Finally, we evaluated the expression of Nrf2 and ZEB1, a central EMT transcription factor, in human gastric tissues. RESULTS: We first demonstrated that the Nrf2 signaling pathway is differentially regulated depending on the infection stage. Rapidly and transiently activated, Nrf2 was downregulated 24 h post-infection in a VacA-dependent manner. We then demonstrated that Nrf2 invalidation leads to increased EMT, which is even exacerbated after H. pylori infection. Finally, Nrf2 expression tended to decrease in human patients' gastric mucosa infected with H. pylori. CONCLUSIONS: Our work supports the hypothesis that Nrf2 downregulation upon H. pylori infection participates in EMT, one of the most important events in gastric carcinogenesis.

3.
J Clin Invest ; 132(8)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35230976

RESUMO

Germline mutations that activate genes in the canonical RAS/MAPK signaling pathway are responsible for rare human developmental disorders known as RASopathies. Here, we analyzed the molecular determinants of Costello syndrome (CS) using a mouse model expressing HRAS p.G12S, patient skin fibroblasts, hiPSC-derived human cardiomyocytes, a HRAS p.G12V zebrafish model, and human fibroblasts expressing lentiviral constructs carrying HRAS p.G12S or HRAS p.G12A mutations. The findings revealed alteration of mitochondrial proteostasis and defective oxidative phosphorylation in the heart and skeletal muscle of CS mice that were also found in the cell models of the disease. The underpinning mechanisms involved the inhibition of the AMPK signaling pathway by mutant forms of HRAS, leading to alteration of mitochondrial proteostasis and bioenergetics. Pharmacological activation of mitochondrial bioenergetics and quality control restored organelle function in HRAS p.G12A and p.G12S cell models, reduced left ventricle hypertrophy in CS mice, and diminished the occurrence of developmental defects in the CS zebrafish model. Collectively, these findings highlight the importance of mitochondrial proteostasis and bioenergetics in the pathophysiology of RASopathies and suggest that patients with CS may benefit from treatment with mitochondrial modulators.


Assuntos
Síndrome de Costello , Mutação em Linhagem Germinativa , Proteínas Proto-Oncogênicas p21(ras) , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Síndrome de Costello/genética , Síndrome de Costello/metabolismo , Homeostase , Humanos , Camundongos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
4.
Antioxid Redox Signal ; 36(7-9): 525-549, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34715750

RESUMO

Aims: Lung cancer is the leading cause of cancer death worldwide, and tobacco smoking is a recognized major risk factor for lung tumor development. We analyzed the effect of tobacco-specific nitrosamines (TSNAs) on human lung adenocarcinoma metabolic reprogramming, an emergent hallmark of carcinogenesis. Results: A series of in vitro and in vivo bioenergetic, proteomic, metabolomic, and tumor biology studies were performed to analyze changes in lung cancer cell metabolism and the consequences for hallmarks of cancer, including tumor growth, cancer cell invasion, and redox signaling. The findings revealed that nicotine-derived nitrosamine ketone (NNK) stimulates mitochondrial function and promotes lung tumor growth in vivo. These malignant properties were acquired from the induction of mitochondrial biogenesis induced by the upregulation and activation of the beta-2 adrenergic receptors (ß2-AR)-cholinergic receptor nicotinic alpha 7 subunit (CHRNAα7)-dependent nitrosamine canonical signaling pathway. The observed NNK metabolic effects were mediated by TFAM overexpression and revealed a key role for mitochondrial reactive oxygen species and Annexin A1 in tumor growth promotion. Conversely, ectopic expression of the mitochondrial antioxidant enzyme manganese superoxide dismutase rescued the reprogramming and malignant metabolic effects of exposure to NNK and overexpression of TFAM, underlining the link between NNK and mitochondrial redox signaling in lung cancer. Innovation: Our findings describe the metabolic changes caused by NNK in a mechanistic framework for understanding how cigarette smoking causes lung cancer. Conclusion: Mitochondria play a role in the promotion of lung cancer induced by tobacco-specific nitrosamines. Antioxid. Redox Signal. 36, 525-549.


Assuntos
Neoplasias Pulmonares , Nitrosaminas , Carcinógenos/farmacologia , Humanos , Neoplasias Pulmonares/metabolismo , Nitrosaminas/farmacologia , Oxirredução , Proteômica , Receptores Adrenérgicos/metabolismo , Transdução de Sinais , Nicotiana/efeitos adversos
5.
J Am Heart Assoc ; 10(19): e016287, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34569248

RESUMO

Background Atherosclerosis is a complex pathology in which dysfunctional endothelium, activated leucocytes, macrophages, and lipid-laden foam cells are implicated, and in which plaque disruption is driven by many putative actors. This study aimed to identify accurate targetable biomarkers using new in vivo approaches to propose tools for improved diagnosis and treatment. Methods and Results Human scFv (single-chain fragment variable) selected by in vivo phage display in a rabbit model of atherosclerosis was reformatted as scFv fused to the scFv-Fc (single-chain fragment variable fused to the crystallizable fragment of immunoglobulin G format) antibodies. Their reactivity was tested using flow cytometry and immunoassays, and aorta sections from animal models and human carotid and coronary artery specimens. A pool of atherosclerotic proteins from human endarterectomies was co-immunoprecipitated with the selected scFv-Fc followed by mass spectrometry for target identification. Near-infrared fluorescence imaging was performed in Apoe-/- mice after injection of an Alexa Fluor 647-labeled scFv-Fc-2c antibody produced in a baculovirus system with 2 additional cysteine residues (ie, 2c) for future coupling to nano-objects for theranostic applications. One scFv-Fc clone (P3) displayed the highest cross-reactivity against atherosclerotic lesion sections (rabbit, mouse, and human) and was chosen for translational development. Mass spectrometry identified galectin-3, a ß-galactoside-binding lectin, as the leader target. ELISA and immunofluorescence assays with a commercial anti-galectin-3 antibody confirmed this specificity. P3 scFv-Fc-2c specifically targeted atherosclerotic plaques in the Apoe-/- mouse model. Conclusions These results provide evidence that the P3 antibody holds great promise for molecular imaging of atherosclerosis and other inflammatory pathologies involving macrophages. Recently, galectin-3 was proposed as a high-value biomarker for the assessment of coronary and carotid atherosclerosis.


Assuntos
Aterosclerose , Bacteriófagos , Placa Aterosclerótica , Anticorpos de Cadeia Única , Animais , Apolipoproteínas E , Aterosclerose/diagnóstico , Aterosclerose/genética , Biomarcadores , Galectina 3/genética , Humanos , Camundongos , Coelhos , Anticorpos de Cadeia Única/genética
6.
Pharmaceutics ; 13(8)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34452121

RESUMO

BACKGROUND: [68Ga]Ga-RM2 is a potent Gastrin-Releasing Peptide-receptor (GRP-R) antagonist for imaging prostate cancer and breast cancer, currently under clinical evaluation in several specialized centers around the world. Targeted radionuclide therapy of GRP-R-expressing tumors is also being investigated. We here report the characteristics of a kit-based formulation of RM2 that should ease the development of GRP-R imaging and make it available to more institutions and patients. METHODS: Stability of the investigated kits over one year was determined using LC/MS/MS and UV-HPLC. Direct 68Ga-radiolabeling was optimized with respect to buffer (pH), temperature, reaction time and shaking time. Conventionally prepared [68Ga]Ga-RM2 using an automated synthesizer was used as a comparator. Finally, the [68Ga]Ga-RM2 product was assessed with regards to hydrophilicity, affinity, internalization, membrane bound fraction, calcium mobilization assay and efflux, which is a valuable addition to the in vivo literature. RESULTS: The kit-based formulation, kept between 2 °C and 8 °C, was stable for over one year. Using acetate buffer pH 3.0 in 2.5-5.1 mL total volume, heating at 100 °C during 10 min and cooling down for 5 min, the [68Ga]Ga-RM2 produced by kit complies with the requirements of the European Pharmacopoeia. Compared with the module production route, the [68Ga]Ga-RM2 produced by kit was faster, displayed higher yields, higher volumetric activity and was devoid of ethanol. In in vitro evaluations, the [68Ga]Ga-RM2 displayed sub-nanomolar affinity (Kd = 0.25 ± 0.19 nM), receptor specific and time dependent membrane-bound fraction of 42.0 ± 5.1% at 60 min and GRP-R mediated internalization of 24.4 ± 4.3% at 30 min. The [natGa]Ga-RM2 was ineffective in stimulating intracellular calcium mobilization. Finally, the efflux of the internalized activity was 64.3 ± 6.5% at 5 min. CONCLUSION: The kit-based formulation of RM2 is suitable to disseminate GRP-R imaging and therapy to distant hospitals without complex radiochemistry equipment.

7.
Sci Immunol ; 6(61)2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330813

RESUMO

Human γδ T cells contribute to tissue homeostasis and participate in epithelial stress surveillance through mechanisms that are not well understood. Here, we identified ephrin type-A receptor 2 (EphA2) as a stress antigen recognized by a human Vγ9Vδ1 TCR. EphA2 is recognized coordinately by ephrin A to enable γδ TCR activation. We identified a putative TCR binding site on the ligand-binding domain of EphA2 that was distinct from the ephrin A binding site. Expression of EphA2 was up-regulated upon AMP-activated protein kinase (AMPK)-dependent metabolic reprogramming of cancer cells, and coexpression of EphA2 and active AMPK in tumors was associated with higher CD3 T cell infiltration in human colorectal cancer tissue. These results highlight the potential of the human γδ TCR to cooperate with a co-receptor to recognize non-MHC-encoded proteins as signals of cellular dysregulation, potentially allowing γδ T cells to sense metabolic energy changes associated with either viral infection or cancer.


Assuntos
Proteínas Quinases Ativadas por AMP/imunologia , Antígenos/imunologia , Linfócitos Intraepiteliais/imunologia , Neoplasias/imunologia , Receptor EphA2/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Proteínas Quinases Ativadas por AMP/genética , Animais , Anticorpos Monoclonais/imunologia , Linhagem Celular , Humanos , Camundongos Knockout , Receptores de Antígenos de Linfócitos T gama-delta/genética
8.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33558238

RESUMO

Propranolol, a nonselective ß-adrenergic receptor (ADRB) antagonist, is the first-line therapy for severe infantile hemangiomas (IH). Since the incidental discovery of propranolol efficacy in IH, preclinical and clinical investigations have shown evidence of adjuvant propranolol response in some malignant tumors. However, the mechanism for propranolol antitumor effect is still largely unknown, owing to the absence of a tumor model responsive to propranolol at nontoxic concentrations. Immunodeficient mice engrafted with different human tumor cell lines were treated with anti-VEGF bevacizumab to create a model sensitive to propranolol. Proteomics analysis was used to reveal propranolol-mediated protein alteration correlating with tumor growth inhibition, and Aquaporin-1 (AQP1), a water channel modulated in tumor cell migration and invasion, was identified. IH tissues and cells were then functionally investigated. Our functional protein association networks analysis and knockdown of ADRB2 and AQP1 indicated that propranolol treatment and AQP1 down-regulation trigger the same pathway, suggesting that AQP1 is a major driver of beta-blocker antitumor response. Examining AQP1 in human hemangioma samples, we found it exclusively in a perivascular layer, so far unrecognized in IH, made of telocytes (TCs). Functional in vitro studies showed that AQP1-positive TCs play a critical role in IH response to propranolol and that modulation of AQP1 in IH-TC by propranolol or shAQP1 decreases capillary-like tube formation in a Matrigel-based angiogenesis assay. We conclude that IH sensitivity to propranolol may rely, at least in part, on a cross talk between lesional vascular cells and stromal TCs.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Aquaporina 1/metabolismo , Hemangioma Capilar/metabolismo , Síndromes Neoplásicas Hereditárias/metabolismo , Neovascularização Patológica/metabolismo , Propranolol/farmacologia , Telócitos/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Hemangioma Capilar/tratamento farmacológico , Humanos , Camundongos , Síndromes Neoplásicas Hereditárias/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Propranolol/uso terapêutico , Proteoma/genética , Proteoma/metabolismo , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Telócitos/efeitos dos fármacos , Telócitos/fisiologia
9.
J Clin Invest ; 131(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33393495

RESUMO

Metabolic reprogramming is a common hallmark of cancer, but a large variability in tumor bioenergetics exists between patients. Using high-resolution respirometry on fresh biopsies of human lung adenocarcinoma, we identified 2 subgroups reflected in the histologically normal, paired, cancer-adjacent tissue: high (OX+) mitochondrial respiration and low (OX-) mitochondrial respiration. The OX+ tumors poorly incorporated [18F]fluorodeoxy-glucose and showed increased expression of the mitochondrial trifunctional fatty acid oxidation enzyme (MTP; HADHA) compared with the paired adjacent tissue. Genetic inhibition of MTP altered OX+ tumor growth in vivo. Trimetazidine, an approved drug inhibitor of MTP used in cardiology, also reduced tumor growth and induced disruption of the physical interaction between the MTP and respiratory chain complex I, leading to a cellular redox and energy crisis. MTP expression in tumors was assessed using histology scoring methods and varied in negative correlation with [18F]fluorodeoxy-glucose incorporation. These findings provide proof-of-concept data for preclinical, precision, bioenergetic medicine in oxidative lung carcinomas.


Assuntos
Sistemas de Liberação de Medicamentos , Neoplasias Pulmonares/enzimologia , Subunidade alfa da Proteína Mitocondrial Trifuncional , Proteínas de Neoplasias , Trimetazidina/farmacologia , Linhagem Celular Tumoral , Complexo I de Transporte de Elétrons/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Subunidade alfa da Proteína Mitocondrial Trifuncional/antagonistas & inibidores , Subunidade alfa da Proteína Mitocondrial Trifuncional/biossíntese , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/biossíntese , Oxirredução
10.
Hum Genet ; 140(6): 933-944, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33475861

RESUMO

Goldenhar syndrome or oculo-auriculo-vertebral spectrum (OAVS) is a complex developmental disorder characterized by asymmetric ear anomalies, hemifacial microsomia, ocular and vertebral defects. We aimed at identifying and characterizing a new gene associated with OAVS. Two affected brothers with OAVS were analyzed by exome sequencing that revealed a missense variant (p.(Asn358Ser)) in the EYA3 gene. EYA3 screening was then performed in 122 OAVS patients that identified the same variant in one individual from an unrelated family. Segregation assessment in both families showed incomplete penetrance and variable expressivity. We investigated this variant in cellular models to determine its pathogenicity and demonstrated an increased half-life of the mutated protein without impact on its ability to dephosphorylate H2AFX following DNA repair pathway induction. Proteomics performed on this cellular model revealed four significantly predicted upstream regulators which are PPARGC1B, YAP1, NFE2L2 and MYC. Moreover, eya3 knocked-down zebrafish embryos developed specific craniofacial abnormalities corroborating previous animal models and supporting its involvement in the OAVS. Additionally, EYA3 gene expression was deregulated in vitro by retinoic acid exposure. EYA3 is the second recurrent gene identified to be associated with OAVS. Moreover, based on protein interactions and related diseases, we suggest the DNA repair as a key molecular pathway involved in craniofacial development.


Assuntos
Reparo do DNA , Proteínas de Ligação a DNA/genética , Síndrome de Goldenhar/genética , Mutação de Sentido Incorreto , Proteínas Tirosina Fosfatases/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Animais , Criança , Pré-Escolar , Proteínas de Ligação a DNA/deficiência , Embrião não Mamífero , Feminino , Regulação da Expressão Gênica , Síndrome de Goldenhar/metabolismo , Síndrome de Goldenhar/patologia , Histonas/genética , Histonas/metabolismo , Humanos , Masculino , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Linhagem , Penetrância , Proteínas Tirosina Fosfatases/deficiência , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Irmãos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sequenciamento do Exoma , Proteínas de Sinalização YAP , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
11.
Antioxid Redox Signal ; 33(13): 883-902, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32475148

RESUMO

Aims: REDOX signaling from reactive oxygen species (ROS) generated by the mitochondria (mitochondrial reactive oxygen species [mtROS]) has been implicated in cancer growth and survival. Here, we investigated the effect of 5-(4-methoxyphenyl)-3H-1,2-dithiole-3-thione (AOL), a recently characterized member of the new class of mtROS suppressors (S1QELs), on human lung adenocarcinoma proteome reprogramming, bioenergetics, and growth. Results: AOL reduced steady-state cellular ROS levels in human lung cancer cells without altering the catalytic activity of complex I. AOL treatment induced dose-dependent inhibition of lung cancer cell proliferation and triggered a reduction in tumor growth in vivo. Molecular investigations demonstrated that AOL reprogrammed the proteome of human lung cancer cells. In particular, AOL suppressed the determinants of the Warburg effect and increased the expression of the complex I subunit NDUFV1 which was also identified as AOL binding site using molecular modeling computer simulations. Comparison of the molecular changes induced by AOL and MitoTEMPO, an mtROS scavenger that is not an S1QEL, identified a core component of 217 proteins commonly altered by the two treatments, as well as drug-specific targets. Innovation: This study provides proof-of-concept data on the anticancer effect of AOL on mouse orthotopic human lung tumors. A unique dataset on proteomic reprogramming by AOL and MitoTEMPO is also provided. Lastly, our study revealed the repression of NDUFV1 by S1QEL AOL. Conclusion: Our findings demonstrate the preclinical anticancer properties of S1QEL AOL and delineate its mode of action on REDOX and cancer signaling.


Assuntos
Adenocarcinoma de Pulmão/etiologia , Adenocarcinoma de Pulmão/metabolismo , Mitocôndrias/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/patologia , Óxidos N-Cíclicos/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Humanos
12.
Proc Natl Acad Sci U S A ; 116(48): 24359-24365, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31719194

RESUMO

Thermosensitive transient receptor potential (TRP) ion channels detect changes in ambient temperature to regulate body temperature and temperature-dependent cellular activity. Rodent orthologs of TRP vanilloid 2 (TRPV2) are activated by nonphysiological heat exceeding 50 °C, and human TRPV2 is heat-insensitive. TRPV2 is required for phagocytic activity of macrophages which are rarely exposed to excessive heat, but what activates TRPV2 in vivo remains elusive. Here we describe the molecular mechanism of an oxidation-induced temperature-dependent gating of TRPV2. While high concentrations of H2O2 induce a modest sensitization of heat-induced inward currents, the oxidant chloramine-T (ChT), ultraviolet A light, and photosensitizing agents producing reactive oxygen species (ROS) activate and sensitize TRPV2. This oxidation-induced activation also occurs in excised inside-out membrane patches, indicating a direct effect on TRPV2. The reducing agent dithiothreitol (DTT) in combination with methionine sulfoxide reductase partially reverses ChT-induced sensitization, and the substitution of the methionine (M) residues M528 and M607 to isoleucine almost abolishes oxidation-induced gating of rat TRPV2. Mass spectrometry on purified rat TRPV2 protein confirms oxidation of these residues. Finally, macrophages generate TRPV2-like heat-induced inward currents upon oxidation and exhibit reduced phagocytosis when exposed to the TRP channel inhibitor ruthenium red (RR) or to DTT. In summary, our data reveal a methionine-dependent redox sensitivity of TRPV2 which may be an important endogenous mechanism for regulation of TRPV2 activity and account for its pivotal role for phagocytosis in macrophages.


Assuntos
Metionina/metabolismo , Canais de Cátion TRPV/química , Canais de Cátion TRPV/metabolismo , Canais de Cálcio/química , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Cloraminas/química , Escherichia coli/genética , Temperatura Alta , Humanos , Peróxido de Hidrogênio/química , Macrófagos , Metionina/química , Mutação , Oxidantes/química , Oxirredução , Técnicas de Patch-Clamp , Fagocitose , Canais de Cátion TRPM/química , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPV/genética , Compostos de Tosil/química
13.
Nat Commun ; 10(1): 4521, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31586061

RESUMO

Designing highly specific modulators of protein-protein interactions (PPIs) is especially challenging in the context of multiple paralogs and conserved interaction surfaces. In this case, direct generation of selective and competitive inhibitors is hindered by high similarity within the evolutionary-related protein interfaces. We report here a strategy that uses a semi-rational approach to separate the modulator design into two functional parts. We first achieve specificity toward a region outside of the interface by using phage display selection coupled with molecular and cellular validation. Highly selective competition is then generated by appending the more degenerate interaction peptide to contact the target interface. We apply this approach to specifically bind a single PDZ domain within the postsynaptic protein PSD-95 over highly similar PDZ domains in PSD-93, SAP-97 and SAP-102. Our work provides a paralog-selective and domain specific inhibitor of PSD-95, and describes a method to efficiently target other conserved PPI modules.


Assuntos
Anticorpos/química , Domínios PDZ , Peptídeos/química , Engenharia de Proteínas , Mapas de Interação de Proteínas/efeitos dos fármacos , Animais , Anticorpos/farmacologia , Células COS , Chlorocebus aethiops , Proteína 4 Homóloga a Disks-Large/antagonistas & inibidores , Proteína 4 Homóloga a Disks-Large/metabolismo , Desenho de Fármacos , Mapeamento de Epitopos , Modelos Moleculares , Biblioteca de Peptídeos , Peptídeos/farmacologia , Ligação Proteica , Proteínas Recombinantes/metabolismo
14.
EMBO Rep ; 20(8): e47182, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31286648

RESUMO

In eukaryotes, membrane contact sites (MCS) allow direct communication between organelles. Plants have evolved a unique type of MCS, inside intercellular pores, the plasmodesmata, where endoplasmic reticulum (ER)-plasma membrane (PM) contacts coincide with regulation of cell-to-cell signalling. The molecular mechanism and function of membrane tethering within plasmodesmata remain unknown. Here, we show that the multiple C2 domains and transmembrane region protein (MCTP) family, key regulators of cell-to-cell signalling in plants, act as ER-PM tethers specifically at plasmodesmata. We report that MCTPs are plasmodesmata proteins that insert into the ER via their transmembrane region while their C2 domains dock to the PM through interaction with anionic phospholipids. A Atmctp3/Atmctp4 loss of function mutant induces plant developmental defects, impaired plasmodesmata function and composition, while MCTP4 expression in a yeast Δtether mutant partially restores ER-PM tethering. Our data suggest that MCTPs are unique membrane tethers controlling both ER-PM contacts and cell-to-cell signalling.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Glicosiltransferases/genética , Proteínas de Membrana/genética , Plasmodesmos/genética , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Membrana Celular/metabolismo , Células Cultivadas , Retículo Endoplasmático/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Glicosiltransferases/deficiência , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas de Membrana/deficiência , Fosfolipídeos/metabolismo , Células Vegetais , Plantas Geneticamente Modificadas , Plasmodesmos/metabolismo , Plasmodesmos/ultraestrutura , Domínios Proteicos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Nicotiana/genética , Nicotiana/metabolismo , Proteína Vermelha Fluorescente
15.
Cell Rep ; 23(12): 3621-3634, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29925003

RESUMO

Although growing evidence indicates that bioenergetic metabolism plays an important role in the progression of tumorigenesis, little information is available on the contribution of reprogramming of energy metabolism in cancer initiation. By applying a quantitative proteomic approach and targeted metabolomics, we find that specific metabolic modifications precede primary skin tumor formation. Using a multistage model of ultraviolet B (UVB) radiation-induced skin cancer, we show that glycolysis, tricarboxylic acid (TCA) cycle, and fatty acid ß-oxidation are decreased at a very early stage of photocarcinogenesis, while the distal part of the electron transport chain (ETC) is upregulated. Reductive glutamine metabolism and the activity of dihydroorotate dehydrogenase (DHODH) are both necessary for maintaining high ETC. Mice with decreased DHODH activity or impaired ETC failed to develop pre-malignant and malignant lesions. DHODH activity represents a major link between DNA repair efficiency and bioenergetic patterning during skin carcinogenesis.


Assuntos
Carcinogênese/metabolismo , Carcinogênese/efeitos da radiação , Metabolismo Energético/efeitos da radiação , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Raios Ultravioleta , Animais , Proteínas de Ligação a DNA/metabolismo , Di-Hidro-Orotato Desidrogenase , Regulação para Baixo/efeitos da radiação , Transporte de Elétrons/efeitos da radiação , Epiderme/patologia , Epiderme/efeitos da radiação , Glutamina/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Queratinócitos/metabolismo , Queratinócitos/patologia , Queratinócitos/efeitos da radiação , Redes e Vias Metabólicas , Camundongos , Camundongos Pelados , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Fenótipo , Regulação para Cima/efeitos da radiação
16.
Biochemistry ; 57(7): 1201-1211, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29345911

RESUMO

Glypican 3 (GPC3) is a complex heparan sulfate proteoglycan associated with the outer surface of the plasma membrane by a glycosylphosphatidylinositol (GPI) anchor. It is also N-glycosylated and processed by a furin-like convertase. GPC3 has numerous biological functions. Although GPC3 is undetectable in normal liver tissue, it is abnormally and highly overexpressed in hepatocellular carcinoma (HCC). Interestingly, proliferation of HCC cells such as HepG2 and HuH7 is inhibited when they express a soluble form of GPC3 after lentiviral transduction. To obtain more insight into the role of some of its post-translational modifications, we designed a mutant GPC3, sGPC3m, without its GPI anchor, convertase cleavage site, and glycosaminoglycan chains. The highly pure sGPC3m protein strongly inhibited HuH7 and HepG2 cell proliferation in vitro and induced a significant increase in their cell doubling time. It changed the morphology of HuH7 cells but not that of HepG2. It induced the enlargement of HuH7 cell nuclear area and the restructuration of adherent cell junctions. Unexpectedly, for both cell types, the levels of apoptosis, cell division, and ß-catenin were not altered by sGPC3m, although growth inhibition was very efficient. Overall, our data show that glycanation and convertase maturation are not required for sGPC3m to inhibit HCC cell proliferation.


Assuntos
Carcinoma Hepatocelular/metabolismo , Glipicanas/metabolismo , Neoplasias Hepáticas/metabolismo , Apoptose , Carcinoma Hepatocelular/genética , Ciclo Celular , Divisão Celular , Linhagem Celular Tumoral , Proliferação de Células , Glicosaminoglicanos/análise , Glicosaminoglicanos/genética , Glicosaminoglicanos/metabolismo , Glipicanas/química , Glipicanas/genética , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Mutação , Processamento de Proteína Pós-Traducional , Via de Sinalização Wnt , beta Catenina/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-29111437

RESUMO

The quantification of monoclonal antibodies (mAbs) such as bevacizumab, a recombinant humanized immunoglobulin G1 (hIgG1), in biological fluids, is an essential prerequisite to any pharmacokinetic preclinical and clinical study. To date, reference techniques used to quantify mAbs rely on enzyme-linked immunosorbent assay (ELISA) lacking specificity. Furthermore, the commercially available ELISA kit to quantify bevacizumab in human plasma only assesses the free fraction of the drug. However, the conditions of storage and analysis of plasma samples could alter the physiological equilibrium between the free, bound and partially bound forms of bevacizumab and this could result in over- or underestimation of drug concentration. We developed a new assay for absolute quantification of total fraction of bevacizumab by liquid chromatography tandem mass spectrometry (LC-MS/MS) basing identification and quantification of bevacizumab on two specific peptides. In this report we compare our assay with two internal standard (IS) calibration approaches: one using a different human mAb (Trastuzumab) and the other using a stable isotope labeled specific peptide. After enrichment by affinity chromatography on protein A and concentration by ultrafiltration, human plasma samples were proteolyzed by trypsin. Linearity was established from 12.5 to 500µg/mL with an interday accuracy ranging from 101.7 to 110.6% and precision from 7.0% to 9.9%. This study demonstrates the importance of the choice of the IS in quantifying bevacizumab in human plasma and highlights the difficulty of reaching a reliable proteolysis with a sufficient recovery. We developed a reliable and cost-effective LC-MS/MS method to quantify total plasmatic fraction of bevacizumab in human plasma. Through our development we proposed a generic methodology easily transposable to quantify all IgG1 subclass very useful for clinical pharmacokinetics studies.


Assuntos
Bevacizumab/sangue , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Bevacizumab/química , Calibragem , Humanos , Modelos Lineares , Peptídeos/química , Padrões de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
18.
Oncotarget ; 8(44): 76174-76188, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-29100302

RESUMO

MicroRNAs (miRNAs) are regulators of several key patho-physiological processes, including cell cycle and apoptosis. Using microarray-based miRNA profiling in K562 cells, a model of chronic myeloid leukemia (CML), we found that the oncoprotein BCR-ABL1 regulates the expression of miR-21, an "onco-microRNA", found to be overexpressed in several cancers. This effect relies on the presence of two STAT binding sites on the promoter of miR-21, and on the phosphorylation status of STAT5, a transcription factor activated by the kinase activity of BCR-ABL1. Mir-21 regulates the expression of PDCD4 (programmed cell death protein 4), a tumor suppressor identified through a proteomics approach. The phosphoSTAT5 - miR-21 - PDCD4 pathway was active in CML primary CD34+ cells, but also in acute myeloid leukemia (AML) models like MV4.11 and MOLM13, where the constitutively active tyrosine kinase FLT3-ITD plays a similar role to BCR-ABL1 in the K562 cell line.

19.
PLoS One ; 12(7): e0180341, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28678862

RESUMO

Biofilms are present in all environments and often result in negative effects due to properties of the biofilm lifestyle and especially antibiotics resistance. Biofilms are associated with chronic infections. Controlling bacterial attachment, the first step of biofilm formation, is crucial for fighting against biofilm and subsequently preventing the persistence of infection. Thus deciphering the underlying molecular mechanisms involved in attachment could allow discovering molecular targets from it would be possible to develop inhibitors against bacterial colonization and potentiate antibiotherapy. To identify the key components and pathways that aid the opportunistic pathogen Pseudomonas aeruginosa in attachment we performed for the first time a proteomic analysis as early as after 20 minutes of incubation using glass wool fibers as a surface. We compared the protein contents of the attached and unattached bacteria. Using mass spectrometry, 3043 proteins were identified. Our results showed that, as of 20 minutes of incubation, using stringent quantification criteria 616 proteins presented a modification of their abundance in the attached cells compared to their unattached counterparts. The attached cells presented an overall reduced gene expression and characteristics of slow-growing cells. The over-accumulation of outer membrane proteins, periplasmic folding proteins and O-antigen chain length regulators was also observed, indicating a profound modification of the cell envelope. Consistently the sigma factor AlgU required for cell envelope homeostasis was highly over-accumulated in attached cells. In addition our data suggested a role of alarmone (p)ppGpp and polyphosphate during the early attachment phase. Furthermore, almost 150 proteins of unknown function were differentially accumulated in the attached cells. Our proteomic analysis revealed the existence of distinctive biological features in attached cells as early as 20 minutes of incubation. Analysis of some mutants demonstrated the interest of this proteomic approach in identifying genes involved in the early phase of adhesion to a surface.


Assuntos
Proteínas de Bactérias/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Pseudomonas aeruginosa/metabolismo , Aderência Bacteriana/genética , Aderência Bacteriana/fisiologia , Proteínas de Bactérias/genética , Biofilmes , Regulação Bacteriana da Expressão Gênica , Vidro/química , Proteoma/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/fisiologia , Reprodutibilidade dos Testes , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Propriedades de Superfície , Fatores de Tempo
20.
J Mol Biol ; 429(12): 1889-1902, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28501585

RESUMO

Mollicutes, including mycoplasmas and spiroplasmas, have been considered as good representatives of the « minimal cell ¼ concept: these wall-less bacteria are small in size and possess a minimal genome and restricted metabolic capacities. However, the recent discovery of the presence of post-translational modifications unknown so far, such as the targeted processing of membrane proteins of mycoplasma pathogens for human and swine, revealed a part of the hidden complexity of these microorganisms. In this study, we show that in the phytopathogen, insect-vectored Spiroplasma citri GII-3 adhesion-related protein (ScARP) adhesins are post-translationally processed through an ATP-dependent targeted cleavage. The cleavage efficiency could be enhanced in vitro when decreasing the extracellular pH or upon the addition of polyclonal antibodies directed against ScARP repeated units, suggesting that modification of the surface charge and/or ScARP conformational changes could initiate the cleavage. The two major sites for primary cleavage are localized within predicted disordered regions and do not fit any previously reported cleavage motif; in addition, the inhibition profile and the metal ion requirements indicate that this post-translational modification involves at least one non-conventional protease. Such a proteolytic process may play a role in S. citri colonization of cells of the host insect. Furthermore, our work indicates that post-translational cleavage of adhesins represents a common feature to mollicutes colonizing distinct hosts and that processing of surface antigens could represent a way to make the most out of a minimal genome.


Assuntos
Adesinas Bacterianas/metabolismo , Processamento de Proteína Pós-Traducional , Spiroplasma citri/metabolismo , Trifosfato de Adenosina/metabolismo , Coenzimas/análise , Inibidores Enzimáticos/análise , Concentração de Íons de Hidrogênio , Hidrólise , Metais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA