Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38077002

RESUMO

The bone marrow is the main site of blood cell production in adults, however, rare pools of hematopoietic stem and progenitor cells with self-renewal and differentiation potential have been found in extramedullary organs. The lung is primarily known for its role in gas exchange but has recently been described as a site of blood production in mice. Here, we show that functional hematopoietic precursors reside in the extravascular spaces of the human lung, at a frequency similar to the bone marrow, and are capable of proliferation and engraftment. The organ-specific gene signature of pulmonary and medullary CD34+ hematopoietic progenitors indicates greater baseline activation of immune, megakaryocyte/platelet and erythroid-related pathways in lung progenitors. Spatial transcriptomics mapped blood progenitors in the lung to a vascular-rich alveolar interstitium niche. These results identify the lung as a pool for uniquely programmed blood stem and progenitor cells with the potential to support hematopoiesis in humans.

2.
JCI Insight ; 8(21)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37788115

RESUMO

Primary graft dysfunction (PGD) limits clinical benefit after lung transplantation, a life-prolonging therapy for patients with end-stage disease. PGD is the clinical syndrome resulting from pulmonary ischemia-reperfusion injury (IRI), driven by innate immune inflammation. We recently demonstrated a key role for NK cells in the airways of mouse models and human tissue samples of IRI. Here, we used 2 mouse models paired with human lung transplant samples to investigate the mechanisms whereby NK cells migrate to the airways to mediate lung injury. We demonstrate that chemokine receptor ligand transcripts and proteins are increased in mouse and human disease. CCR5 ligand transcripts were correlated with NK cell gene signatures independently of NK cell CCR5 ligand secretion. NK cells expressing CCR5 were increased in the lung and airways during IRI and had increased markers of tissue residency and maturation. Allosteric CCR5 drug blockade reduced the migration of NK cells to the site of injury. CCR5 blockade also blunted quantitative measures of experimental IRI. Additionally, in human lung transplant bronchoalveolar lavage samples, we found that CCR5 ligand was associated with increased patient morbidity and that the CCR5 receptor was increased in expression on human NK cells following PGD. These data support a potential mechanism for NK cell migration during lung injury and identify a plausible preventative treatment for PGD.


Assuntos
Lesão Pulmonar , Traumatismo por Reperfusão , Animais , Humanos , Camundongos , Células Matadoras Naturais , Ligantes , Pulmão/metabolismo , Lesão Pulmonar/metabolismo , Receptores CCR5/genética , Traumatismo por Reperfusão/metabolismo
3.
J Clin Invest ; 132(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35192546

RESUMO

Platelets have a wide range of functions including critical roles in hemostasis, thrombosis, and immunity. We hypothesized that during acute inflammation, such as in life-threatening sepsis, there are fundamental changes in the sites of platelet production and phenotypes of resultant platelets. Here, we showed during sepsis that the spleen was a major site of megakaryopoiesis and platelet production. Sepsis provoked an adrenergic-dependent mobilization of megakaryocyte-erythrocyte progenitors (MEPs) from the bone marrow to the spleen, where IL-3 induced their differentiation into megakaryocytes (MKs). In the spleen, immune-skewed MKs produced a CD40 ligandhi platelet population with potent immunomodulatory functions. Transfusions of post-sepsis platelets enriched from splenic production enhanced immune responses and reduced overall mortality in sepsis-challenged animals. These findings identify a spleen-derived protective platelet population that may be broadly immunomodulatory in acute inflammatory states such as sepsis.


Assuntos
Plaquetas , Sepse , Animais , Plaquetas/metabolismo , Ligante de CD40 , Megacariócitos , Sepse/metabolismo , Baço
4.
ACS Cent Sci ; 7(10): 1638-1649, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34729407

RESUMO

The biology of human granzymes remains enigmatic in part due to our inability to probe their functions outside of in vitro assays or animal models with divergent granzyme species. We hypothesize that the biology of human granzymes could be better elaborated with a translational imaging technology to reveal the contexts in which granzymes are secreted and biochemically active in vivo. Here, we advance toward this goal by engineering a Granzyme targeting Restricted Interaction Peptide specific to family member B (GRIP B) to measure secreted granzyme B (GZMB) biochemistry with positron emission tomography. A proteolytic cleavage of 64Cu-labeled GRIP B liberates a radiolabeled form of Temporin L, which sequesters the radioisotope by binding to adjacent phospholipid bilayers. Thus, at extended time points postinjection (i.e., hours, not seconds), tissue biodistribution of the radioisotope in vivo reflects relative units of the GZMB activity. As a proof of concept, we show in three syngeneic mouse cancer models that 64Cu-GRIP B detects GZMB from T cells activated with immune checkpoint inhibitors (CPI). Remarkably, the radiotracer detects the proteolysis within tumors but also in lymphoid tissue, where immune cells are activated by a systemic CPI. Control experiments with an uncleavable analogue of 64Cu-GRIP B and tumor imaging studies in germline GZMB knockout mice were applied to show that 64Cu-GRIP B is specific for GZMB proteolysis. Furthermore, we explored a potential noncytotoxic function for GZMB by applying 64Cu-GRIP B to a model of pulmonary inflammation. In summary, we demonstrate that granzyme biochemistry can be assessed in vivo using an imaging modality that can be scaled vertically into human subjects.

5.
Am J Respir Cell Mol Biol ; 64(5): 557-568, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33556295

RESUMO

Platelet activation and pulmonary recruitment occur in patients with asthma and in animal models of allergic asthma, in which leukocyte infiltration, airway remodeling, and hyperresponsiveness are suppressed by experimental platelet depletion. These observations suggest the importance of platelets to various characteristics of allergic disease, but the mechanisms of platelet migration and location are not understood. The aim of this study was to assess the mechanism of platelet recruitment to extravascular compartments of lungs from patients with asthma and after allergen challenge in mice sensitized to house dust mite (HDM) extract (contains the DerP1 [Dermatophagoides pteronyssinus extract peptidase 1] allergen); in addition, we assessed the role of chemokines in this process. Lung sections were immunohistochemically stained for CD42b+ platelets. Intravital microscopy in allergic mice was used to visualize platelets tagged with an anti-mouse CD49b-PE (phycoerythrin) antibody. Platelet-endothelial interactions were measured in response to HDM (DerP1) exposure in the presence of antagonists to CCR3, CCR4, and CXCR4. Extravascular CD42b+ platelets were detected in the epithelium and submucosa in bronchial biopsy specimens taken from subjects with steroid-naive mild asthma. Platelets were significantly raised in the lung parenchyma from patients with fatal asthma compared with postmortem control-lung tissue. Furthermore, in DerP1-sensitized mice, subsequent HDM exposure induced endothelial rolling, endothelial adhesion, and recruitment of platelets into airway walls, compared with sham-sensitized mice, via a CCR3-dependent mechanism in the absence of aggregation or interactions with leukocytes. Localization of singular, nonaggregated platelets occurs in lungs of patients with asthma. In allergic mice, platelet recruitment occurs via recognized vascular adhesive and migratory events, independently of leukocytes via a CCR3-dependent mechanism.


Assuntos
Asma/imunologia , Plaquetas/imunologia , Hiper-Reatividade Brônquica/imunologia , Pulmão/imunologia , Ativação Plaquetária/imunologia , Receptores CCR3/imunologia , Adolescente , Adulto , Idoso , Alérgenos/administração & dosagem , Animais , Antígenos de Dermatophagoides/administração & dosagem , Proteínas de Artrópodes/administração & dosagem , Asma/genética , Asma/mortalidade , Asma/patologia , Plaquetas/efeitos dos fármacos , Hiper-Reatividade Brônquica/induzido quimicamente , Hiper-Reatividade Brônquica/genética , Hiper-Reatividade Brônquica/patologia , Criança , Cisteína Endopeptidases/administração & dosagem , Modelos Animais de Doenças , Feminino , Expressão Gênica , Humanos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Ativação Plaquetária/efeitos dos fármacos , Pyroglyphidae/química , Pyroglyphidae/imunologia , Receptores CCR3/genética , Receptores CCR4/genética , Receptores CCR4/imunologia , Receptores CXCR4/genética , Receptores CXCR4/imunologia , Transdução de Sinais , Análise de Sobrevida
6.
Blood ; 125(7): 1146-58, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25538043

RESUMO

The small GTPase Rac is required for neutrophil recruitment during inflammation, but its guanine-nucleotide exchange factor (GEF) activators seem dispensable for this process, which led us to investigate the possibility of cooperation between Rac-GEF families. Thioglycollate-induced neutrophil recruitment into the peritoneum was more severely impaired in P-Rex1(-/-) Vav1(-/-) (P1V1) or P-Rex1(-/-) Vav3(-/-) (P1V3) mice than in P-Rex null or Vav null mice, suggesting cooperation between P-Rex and Vav Rac-GEFs in this process. Neutrophil transmigration and airway infiltration were all but lost in P1V1 and P1V3 mice during lipopolysaccharide (LPS)-induced pulmonary inflammation, with altered intercellular adhesion molecule 1-dependent slow neutrophil rolling and strongly reduced L- and E-selectin-dependent adhesion in airway postcapillary venules. Analysis of adhesion molecule expression, neutrophil adhesion, spreading, and migration suggested that these defects were only partially neutrophil-intrinsic and were not obviously involving vascular endothelial cells. Instead, P1V1 and P1V3 platelets recapitulated the impairment of LPS-induced intravascular neutrophil adhesion and recruitment, showing P-Rex and Vav expression in platelets to be crucial. Similarly, during ovalbumin-induced allergic inflammation, pulmonary recruitment of P1V1 and P1V3 eosinophils, monocytes, and lymphocytes was compromised in a platelet-dependent manner, and airway inflammation was essentially abolished, resulting in improved airway responsiveness. Therefore, platelet P-Rex and Vav family Rac-GEFs play important proinflammatory roles in leukocyte recruitment.


Assuntos
Plaquetas/metabolismo , Quimiotaxia de Leucócito/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Inflamação/genética , Inflamação/imunologia , Proteínas Proto-Oncogênicas c-vav/genética , Doença Aguda , Animais , Adesão Celular/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Lipopolissacarídeos , Camundongos , Camundongos Knockout , Infiltração de Neutrófilos/genética , Pneumonia/genética , Pneumonia/imunologia , Proteínas Proto-Oncogênicas c-vav/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA