Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 127: 106000, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35853296

RESUMO

In the last decade, emerging evidence has shown that low molecular weight protein tyrosine phosphatase (LMWPTP) not only contributes to the progression of cancer but is associated with prostate low survival rate and colorectal cancer metastasis. We report that LMWPTP favors the glycolytic profile in some tumors. Therefore, the focus of the present study was to identify metabolic enzymes that correlate with LMWPTP expression in patient samples. Exploratory data analysis from RNA-seq, proteomics, and histology staining, confirmed the higher expression of LMWPTP in CRC. Our descriptive statistical analyses indicate a positive expression correlation between LMWPTP and energy metabolism enzymes such as acetyl-CoA carboxylase (ACC) and fatty acid synthase (FASN). In addition, we examine the potential of violacein to reprogram energetic metabolism and LMWPTP activity. Violacein treatment induced a shift of glycolytic to oxidative metabolism associated with alteration in mitochondrial efficiency, as indicated by higher oxygen consumption rate. Particularly, violacein treated cells displayed higher proton leak and ATP-linked oxygen consumption rate (OCR) as an indicator of the OXPHOS preference. Notably, violacein is able to bind and inhibit LMWPTP. Since the LMWPTP acts as a hub of signaling pathways that offer tumor cells invasive advantages, such as survival and the ability to migrate, our findings highlight an unexplored potential of violacein in circumventing the metabolic plasticity of tumor cells.


Assuntos
Neoplasias Colorretais , Proteínas Tirosina Fosfatases , Neoplasias Colorretais/patologia , Humanos , Indóis , Masculino , Mitocôndrias/metabolismo , Peso Molecular , Proteínas Tirosina Fosfatases/metabolismo , Tirosina
2.
J Cell Biochem ; 123(7): 1247-1258, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35661241

RESUMO

Violacein is a secondary metabolite produced by several microorganisms including Chromobacterium violaceum, and it is already used in food and cosmetics. However, due to its potent anticancer and low side effects, its molecular action needs to be deeply scrutinized. Therefore, the main objective of this study was to evaluate the violacein's ability to interfere with three cancer hallmarks: growth factors receptor-dependent signaling, proliferation, and epithelial-mesenchymal transition (EMT). Violacein has been associated with the induction of apoptosis in colorectal cancer (CRC) cells. Here, we demonstrate that this molecule is also active in CRC spheroids and inhibits cell migration. Violacein treatment reduced the amount of EGFR and AXL receptors in the HT29 cell line. Accordingly, the inhibition of the AKT, ERK, and PKCδ kinases, which are downstream mediators of the signaling pathways triggered by EGFR and AXL, is detected. Another interesting finding was that even when the cells were stimulated with transforming growth factor-ß, the EMT marker (N-cadherin) decreased. Therefore, this study provides further evidence that reinforces the potential of violacein as an antitumor agent, once this biomolecule can "switch off" properties associated with cancer plasticity.


Assuntos
Neoplasias Colorretais , Transição Epitelial-Mesenquimal , Linhagem Celular Tumoral , Movimento Celular , Neoplasias Colorretais/metabolismo , Receptores ErbB , Humanos , Indóis/farmacologia
3.
Mol Cell Biochem ; 466(1-2): 83-89, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32016696

RESUMO

In the last decade, several reports highlight the importance of the low molecular weight protein tyrosine phosphatase (LMWPTP) in cancer aggressiveness and resistance. Specifically, in chronic myeloid leukemia, we have reported that high expression of the LMWPTP maintains Src and Bcr-Abl kinases in an activated status and the glucose metabolism is directed to lactate production and, in turn, favor the pentoses pathway (one of the key process for antioxidant and protective responses). In this present study, we investigated the possible correlation between the LMWPTP and autophagy. In resistant chronic myeloid leukemia cells, the antioxidant response is supported by the glycolytic metabolism and antioxidant enzymes such as SOD and catalase, both favored by the LMWPTP. Therefore, when the cells were challenged by hydrogen peroxide treatment, the LMWPTP level goes down as well as SOD, and in turn, autophagy process was stimulated. The findings presented here reveal a novel aspect by which LMWPTP cooperates for the resistance of CML towards stressor stimuli.


Assuntos
Antioxidantes/metabolismo , Autofagia , Leucemia Mielogênica Crônica BCR-ABL Positiva/enzimologia , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia
4.
Inflamm Allergy Drug Targets ; 14(1): 53-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26490662

RESUMO

Harmful influences in the process of photoaging and skin damage are associated with infrared A (IRA) radiation, such as, disturbance of dermal extracellular matrix by up regulation of matrix metalloproteinase-1 (MMP1). Furthermore, DNA damage, induction of cytotoxicity and oxidative stress by decreasing natural antioxidant ability has been reported after acute exposure to IRA. The present study provides additional evidence that IRA radiation response in human skin fibroblasts produces deleterious effects to the cell, such as accelerating aging and weakening of their antioxidant defense mechanism. Human skin fibroblasts were exposed to a non-cytotoxic dose of IRA radiation and cultured for different periods for further collection of cell-free supernatants and lysates, and quantification of MMP-1, catalase, superoxide dismutase, and GADD45a. Our results corroborate previous published data and strongly indicate a negative impact of IRA radiation on the skin physiological by mechanisms involving reduced endogenous antioxidant enzymatic defense, increased MMP-1 and decreased repair process of DNA by reducing GADD45a protein, in cultured human fibroblasts. From a clinical perspective, IRA radiation acts by mechanisms distinct from those observed in ultraviolet radiation indicating the need for developing and making available cosmetics for skin care with properties beyond protection exerted by traditional sunscreens.


Assuntos
Catalase/biossíntese , Fibroblastos/efeitos da radiação , Metaloproteinase 1 da Matriz/biossíntese , Pele/patologia , Proteínas de Ciclo Celular , Células Cultivadas , Reparo do DNA/efeitos da radiação , Exposição Ambiental/efeitos adversos , Fibroblastos/metabolismo , Humanos , Raios Infravermelhos/efeitos adversos , Proteínas Nucleares , Oxirredução/efeitos da radiação , Radiação , Superóxido Dismutase/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA