Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biol Chem ; 400(10): 1359-1370, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30738013

RESUMO

Cystic fibrosis transmembrane conductance regulator (CFTR) is a unique member of the ATP-binding cassette family of proteins because it has evolved into a channel. Mutations in CFTR cause cystic fibrosis, the most common genetic disease in people of European origin. The F508del mutation is found in about 90% of patients and here we present data that suggest its main effect is on CFTR stability rather than on the three-dimensional (3D) folded state. A survey of recent cryo-electron microscopy studies was carried out and this highlighted differences in terms of CFTR conformation despite similarities in experimental conditions. We further studied CFTR structure under various phosphorylation states and with the CFTR-interacting protein NHERF1. The coexistence of outward-facing and inward-facing conformations under a range of experimental conditions was suggested from these data. These results are discussed in terms of structural models for channel gating, and favour the model where the mostly disordered regulatory-region of the protein acts as a channel plug.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Microscopia Crioeletrônica , Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Mutação , Fosfoproteínas/metabolismo , Fosforilação , Conformação Proteica , Estabilidade Proteica , Proteólise , Trocadores de Sódio-Hidrogênio/metabolismo
2.
Biochem Soc Trans ; 46(5): 1093-1098, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30154098

RESUMO

CFTR (ABCC7) is a phospho-regulated chloride channel that is found in the apical membranes of epithelial cells, is gated by ATP and the activity of the protein is crucial in the homeostasis of the extracellular liquid layer in many organs [Annu. Rev. Biochem. (2008) 77, 701-726; Science (1989) 245, 1066-1073]. Mutations in CFTR cause the inherited disease cystic fibrosis (CF), the most common inherited condition in humans of European descent [Science (1989) 245, 1066-1073; Pflugers Arch. (2007) 453, 555-567]. The structural basis of CF will be discussed in this article.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/genética , Fibrose Cística/metabolismo , Trifosfato de Adenosina/química , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/metabolismo , Homeostase , Humanos , Ativação do Canal Iônico , Mutação , Fosforilação , Domínios Proteicos , Relação Estrutura-Atividade , Peixe-Zebra
3.
Methods ; 147: 176-186, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29702228

RESUMO

Membrane proteins represent a large proportion of the proteome, but have characteristics that are problematic for many methods in modern molecular biology (that have often been developed with soluble proteins in mind). For structural studies, low levels of expression and the presence of detergent have been thorns in the flesh of the membrane protein experimentalist. Here we discuss the use of cryo-electron microscopy in breakthrough studies of the structures of membrane proteins. This method can cope with relatively small quantities of sample and with the presence of detergent. Until recently, cryo-electron microscopy could not deliver high-resolution structures of membrane proteins, but recent developments in transmission electron microscope technology and in the image processing of single particles imaged in the microscope have revolutionized the field, allowing high resolution structures to be obtained. Here we focus on the specific issues surrounding the application of cryo-electron microscopy to the study of membrane proteins, especially in the choice of a system to keep the protein soluble.


Assuntos
Microscopia Crioeletrônica/métodos , Proteínas de Membrana/química , Regulador de Condutância Transmembrana em Fibrose Cística/química , Humanos , Maleatos/química , Micelas , Poliestirenos/química
4.
Cell Mol Life Sci ; 74(1): 23-38, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27734094

RESUMO

The cystic fibrosis transmembrane conductance regulator (CFTR) is responsible for the disease cystic fibrosis (CF). It is a membrane protein belonging to the ABC transporter family functioning as a chloride/anion channel in epithelial cells around the body. There are over 1500 mutations that have been characterised as CF-causing; the most common of these, accounting for ~70 % of CF cases, is the deletion of a phenylalanine at position 508. This leads to instability of the nascent protein and the modified structure is recognised and then degraded by the ER quality control mechanism. However, even pharmacologically 'rescued' F508del CFTR displays instability at the cell's surface, losing its channel function rapidly and it is rapidly removed from the plasma membrane for lysosomal degradation. This review will, therefore, explore the link between stability and structure/function relationships of membrane proteins and CFTR in particular and how approaches to study CFTR structure depend on its stability. We will also review the application of a fluorescence labelling method for the assessment of the thermostability and the tertiary structure of CFTR.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , Animais , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/isolamento & purificação , Humanos , Conformação Proteica , Estabilidade Proteica , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA