Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ultrasound Med Biol ; 48(9): 1888-1898, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35798625

RESUMO

The aim of this research was to explore the interaction between ultrasound-activated microbubbles (MBs) and Pseudomonas aeruginosa biofilms, specifically the effects of MB concentration, ultrasound exposure and substrate properties on bactericidal efficacy. Biofilms were grown using a Centre for Disease Control (CDC) bioreactor on polypropylene or stainless-steel coupons as acoustic analogues for soft and hard tissue, respectively. Biofilms were treated with different concentrations of phospholipid-shelled MBs (107-108 MB/mL), a sub-inhibitory concentration of gentamicin (4 µg/mL) and 1-MHz ultrasound with a continuous or pulsed (100-kHz pulse repetition frequency, 25% duty cycle, 0.5-MPa peak-to-peak pressure) wave. The effect of repeated ultrasound exposure with intervals of either 15- or 60-min was also investigated. With polypropylene coupons, the greatest bactericidal effect was achieved with 2 × 5 min of pulsed ultrasound separated by 60 min and a microbubble concentration of 5 × 107 MBs/mL. A 0.76 log (83%) additional reduction in the number of bacteria was achieved compared with the use of an antibiotic alone. With stainless-steel coupons, a 67% (0.46 log) reduction was obtained under the same exposure conditions, possibly due to enhancement of a standing wave field which inhibited MB penetration in the biofilm. These findings demonstrate the importance of treatment parameter selection in antimicrobial applications of MBs and ultrasound in different tissue environments.


Assuntos
Microbolhas , Pseudomonas aeruginosa , Acústica , Antibacterianos/farmacologia , Biofilmes , Impedância Elétrica , Gentamicinas/farmacologia , Polipropilenos/farmacologia , Aço Inoxidável/farmacologia
2.
ACS Infect Dis ; 4(2): 158-174, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29260545

RESUMO

Antimicrobial resistance has become a major global concern. Development of novel antimicrobial agents for the treatment of infections caused by multidrug resistant (MDR) pathogens is an urgent priority. Pyrrolobenzodiazepines (PBDs) are a promising class of antibacterial agents initially discovered and isolated from natural sources. Recently, C8-linked PBD biaryl conjugates have been shown to be active against some MDR Gram-positive strains. To explore the role of building block orientations on antibacterial activity and obtain structure activity relationship (SAR) information, four novel structures were synthesized in which the building blocks of previously reported compounds were inverted, and their antibacterial activity was studied. The compounds showed minimum inhibitory concentrations (MICs) in the range of 0.125-32 µg/mL against MDR Gram-positive strains with a bactericidal mode of action. The results showed that a single inversion of amide bonds reduces the activity while the double inversion restores the activity against MDR pathogens. All inverted compounds did not stabilize DNA and lacked eukaryotic toxicity. The compounds inhibit DNA gyrase in vitro, and the most potent compound was equally active against both wild-type and mutant DNA gyrase in a biochemical assay. The observed activity of the compounds against methicillin resistant S. aureus (MRSA) strains with equivalent gyrase mutations is consistent with gyrase inhibition being the mechanism of action in vivo, although this has not been definitively confirmed in whole cells. This conclusion is supported by a molecular modeling study showing interaction of the compounds with wild-type and mutant gyrases. This study provides important SAR information about this new class of antibacterial agents.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Benzodiazepinas/química , Benzodiazepinas/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Pirróis/química , Pirróis/farmacologia , Antibacterianos/efeitos adversos , Benzodiazepinas/efeitos adversos , Linhagem Celular Tumoral , DNA/química , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Pirróis/efeitos adversos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA