Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(4): 2321-2336, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38300987

RESUMO

Bruton's tyrosine kinase (BTK), a member of the TEC family of kinases, is an essential effector of B-cell receptor (BCR) signaling. Chronic activation of BTK-mediated BCR signaling is a hallmark of many hematological malignancies, which makes it an attractive therapeutic target. Pharmacological inhibition of BTK enzymatic function is now a well-proven strategy for the treatment of patients with these malignancies. We report the discovery and characterization of NX-2127, a BTK degrader with concomitant immunomodulatory activity. By design, NX-2127 mediates the degradation of transcription factors IKZF1 and IKZF3 through molecular glue interactions with the cereblon E3 ubiquitin ligase complex. NX-2127 degrades common BTK resistance mutants, including BTKC481S. NX-2127 is orally bioavailable, exhibits in vivo degradation across species, and demonstrates efficacy in preclinical oncology models. NX-2127 has advanced into first-in-human clinical trials and achieves deep and sustained degradation of BTK following daily oral dosing at 100 mg.


Assuntos
Inibidores de Proteínas Quinases , Proteínas Tirosina Quinases , Humanos , Tirosina Quinase da Agamaglobulinemia , Inibidores de Proteínas Quinases/efeitos adversos , Transdução de Sinais
2.
Cell Chem Biol ; 30(3): 235-247.e12, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36863346

RESUMO

Malignant tumors can evade destruction by the immune system by attracting immune-suppressive regulatory T cells (Treg) cells. The IKZF2 (Helios) transcription factor plays a crucial role in maintaining function and stability of Treg cells, and IKZF2 deficiency reduces tumor growth in mice. Here we report the discovery of NVP-DKY709, a selective molecular glue degrader of IKZF2 that spares IKZF1/3. We describe the recruitment-guided medicinal chemistry campaign leading to NVP-DKY709 that redirected the degradation selectivity of cereblon (CRBN) binders from IKZF1 toward IKZF2. Selectivity of NVP-DKY709 for IKZF2 was rationalized by analyzing the DDB1:CRBN:NVP-DKY709:IKZF2(ZF2 or ZF2-3) ternary complex X-ray structures. Exposure to NVP-DKY709 reduced the suppressive activity of human Treg cells and rescued cytokine production in exhausted T-effector cells. In vivo, treatment with NVP-DKY709 delayed tumor growth in mice with a humanized immune system and enhanced immunization responses in cynomolgus monkeys. NVP-DKY709 is being investigated in the clinic as an immune-enhancing agent for cancer immunotherapy.


Assuntos
Neoplasias , Fatores de Transcrição , Animais , Humanos , Camundongos , Fator de Transcrição Ikaros , Imunoterapia , Neoplasias/terapia , Neoplasias/metabolismo , Linfócitos T Reguladores/metabolismo , Fatores de Transcrição/metabolismo
3.
Blood ; 141(13): 1584-1596, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36375120

RESUMO

Bruton tyrosine kinase (BTK) is essential for B-cell receptor (BCR) signaling, a driver of chronic lymphocytic leukemia (CLL). Covalent inhibitors bind C481 in the active site of BTK and have become a preferred CLL therapy. Disease progression on covalent BTK inhibitors is commonly associated with C481 mutations. Here, we investigated a targeted protein degrader, NRX-0492, that links a noncovalent BTK-binding domain to cereblon, an adaptor protein of the E3 ubiquitin ligase complex. NRX-0492 selectively catalyzes ubiquitylation and proteasomal degradation of BTK. In primary CLL cells, NRX-0492 induced rapid and sustained degradation of both wild-type and C481 mutant BTK at half maximal degradation concentration (DC50) of ≤0.2 nM and DC90 of ≤0.5 nM, respectively. Sustained degrader activity was maintained for at least 24 hours after washout and was equally observed in high-risk (deletion 17p) and standard-risk (deletion 13q only) CLL subtypes. In in vitro testing against treatment-naïve CLL samples, NRX-0492 was as effective as ibrutinib at inhibiting BCR-mediated signaling, transcriptional programs, and chemokine secretion. In patient-derived xenografts, orally administered NRX-0492 induced BTK degradation and inhibited activation and proliferation of CLL cells in blood and spleen and remained efficacious against primary C481S mutant CLL cells collected from a patient progressing on ibrutinib. Oral bioavailability, >90% degradation of BTK at subnanomolar concentrations, and sustained pharmacodynamic effects after drug clearance make this class of targeted protein degraders uniquely suitable for clinical translation, in particular as a strategy to overcome BTK inhibitor resistance. Clinical studies testing this approach have been initiated (NCT04830137, NCT05131022).


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Tirosina Quinase da Agamaglobulinemia , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Xenoenxertos , Resistencia a Medicamentos Antineoplásicos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/uso terapêutico
4.
Sci Rep ; 7(1): 223, 2017 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-28303005

RESUMO

Aminoacyl-tRNA synthetases (aaRSs) charge tRNAs with their cognate amino acid, an essential precursor step to loading of charged tRNAs onto the ribosome and addition of the amino acid to the growing polypeptide chain during protein synthesis. Because of this important biological function, aminoacyl-tRNA synthetases have been the focus of anti-infective drug development efforts and two aaRS inhibitors have been approved as drugs. Several researchers in the scientific community requested aminoacyl-tRNA synthetases to be targeted in the Seattle Structural Genomics Center for Infectious Disease (SSGCID) structure determination pipeline. Here we investigate thirty-one aminoacyl-tRNA synthetases from infectious disease organisms by co-crystallization in the presence of their cognate amino acid, ATP, and/or inhibitors. Crystal structures were determined for a CysRS from Borrelia burgdorferi bound to AMP, GluRS from Borrelia burgdorferi and Burkholderia thailandensis bound to glutamic acid, a TrpRS from the eukaryotic pathogen Encephalitozoon cuniculi bound to tryptophan, a HisRS from Burkholderia thailandensis bound to histidine, and a LysRS from Burkholderia thailandensis bound to lysine. Thus, the presence of ligands may promote aaRS crystallization and structure determination. Comparison with homologous structures shows conformational flexibility that appears to be a recurring theme with this enzyme class.


Assuntos
Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/metabolismo , Borrelia burgdorferi/enzimologia , Burkholderia/enzimologia , Encephalitozoon cuniculi/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Doenças Transmissíveis/microbiologia , Cristalografia por Raios X , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Humanos , Ligantes , Modelos Moleculares , Ligação Proteica , Conformação Proteica
5.
PLoS One ; 10(4): e0125010, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25909780

RESUMO

Crystallization of a maltose-binding protein MCL1 fusion has yielded a robust crystallography platform that generated the first apo MCL1 crystal structure, as well as five ligand-bound structures. The ability to obtain fragment-bound structures advances structure-based drug design efforts that, despite considerable effort, had previously been intractable by crystallography. In the ligand-independent crystal form we identify inhibitor binding modes not observed in earlier crystallographic systems. This MBP-MCL1 construct dramatically improves the structural understanding of well-validated MCL1 ligands, and will likely catalyze the structure-based optimization of high affinity MCL1 inhibitors.


Assuntos
Proteínas Ligantes de Maltose/química , Proteína de Sequência 1 de Leucemia de Células Mieloides/química , Apoproteínas/química , Apoproteínas/genética , Cristalização , Cristalografia por Raios X , Desenho de Fármacos , Humanos , Ligantes , Proteínas Ligantes de Maltose/genética , Modelos Moleculares , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética
6.
J Biol Chem ; 290(9): 5555-65, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25533465

RESUMO

Bacterial ATP-binding cassette (ABC) importers are primary active transporters that are critical for nutrient uptake. Based on structural and functional studies, ABC importers can be divided into two distinct classes, type I and type II. Type I importers follow a strict alternating access mechanism that is driven by the presence of the substrate. Type II importers accept substrates in a nucleotide-free state, with hydrolysis driving an inward facing conformation. The ribose transporter in Escherichia coli is a tripartite complex consisting of a cytoplasmic ATP-binding cassette protein, RbsA, with fused nucleotide binding domains; a transmembrane domain homodimer, RbsC2; and a periplasmic substrate binding protein, RbsB. To investigate the transport mechanism of the complex RbsABC2, we probed intersubunit interactions by varying the presence of the substrate ribose and the hydrolysis cofactors, ATP/ADP and Mg(2+). We were able to purify a full complex, RbsABC2, in the presence of stable, transition state mimics (ATP, Mg(2+), and VO4); a RbsAC complex in the presence of ADP and Mg(2+); and a heretofore unobserved RbsBC complex in the absence of cofactors. The presence of excess ribose also destabilized complex formation between RbsB and RbsC. These observations suggest that RbsABC2 shares functional traits with both type I and type II importers, as well as possessing unique features, and employs a distinct mechanism relative to other ABC transporters.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Periplásmicas de Ligação/metabolismo , Ribose/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Transporte Biológico/genética , Western Blotting , Dicroísmo Circular , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas de Escherichia coli/genética , Magnésio/metabolismo , Proteínas de Membrana Transportadoras/genética , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação , Proteínas Periplásmicas de Ligação/genética , Ligação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
7.
ACS Med Chem Lett ; 5(12): 1308-12, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25516789

RESUMO

A direct binding screen of 100 000 sp(3)-rich molecules identified a single diastereomer of a macrolactam core that binds specifically to myeloid cell leukemia 1 (MCL1). A comprehensive toolbox of biophysical methods was applied to validate the original hit and subsequent analogues and also established a binding mode competitive with NOXA BH3 peptide. X-ray crystallography of ligand bound to MCL1 reveals a remarkable ligand/protein shape complementarity that diverges from previously disclosed MCL1 inhibitor costructures.

8.
ACS Chem Biol ; 8(9): 1882-7, 2013 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-23755875

RESUMO

The human protein siderocalin (Scn) inhibits bacterial iron acquisition by binding catechol siderophores. Several pathogenic bacteria respond by making stealth siderophores that are not recognized by Scn. Fluvibactin and vibriobactin, respectively of Vibrio fluvialis and Vibrio cholerae , include an oxazoline adjacent to a catechol. This chelating unit binds iron either in a catecholate or a phenolate-oxazoline coordination mode. The latter has been suggested to make vibriobactin a stealth siderophore without directly identifying the coordination mode in relation to Scn binding. We use Scn binding assays with the two siderophores and two oxazoline-substituted analogs and the crystal structure of Fe-fluvibactin:Scn to show that the oxazoline does not prevent Scn binding; hence, vibriobactin is not a stealth siderophore. We show that the phenolate-oxazoline coordination mode is present at physiological pH and is not bound by Scn. However, Scn binding shifts the coordination to the catecholate mode and thereby inactivates this siderophore.


Assuntos
Proteínas de Transporte/metabolismo , Catecóis/metabolismo , Ferro/metabolismo , Oxazóis/metabolismo , Sideróforos/metabolismo , Vibrio cholerae/metabolismo , Proteínas de Transporte/química , Catecóis/química , Humanos , Lipocalina-2 , Modelos Moleculares , Oxazóis/química , Sideróforos/química , Vibrio cholerae/química
9.
PLoS One ; 8(1): e53851, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23382856

RESUMO

BACKGROUND: The genus Burkholderia includes pathogenic gram-negative bacteria that cause melioidosis, glanders, and pulmonary infections of patients with cancer and cystic fibrosis. Drug resistance has made development of new antimicrobials critical. Many approaches to discovering new antimicrobials, such as structure-based drug design and whole cell phenotypic screens followed by lead refinement, require high-resolution structures of proteins essential to the parasite. METHODOLOGY/PRINCIPAL FINDINGS: We experimentally identified 406 putative essential genes in B. thailandensis, a low-virulence species phylogenetically similar to B. pseudomallei, the causative agent of melioidosis, using saturation-level transposon mutagenesis and next-generation sequencing (Tn-seq). We selected 315 protein products of these genes based on structure-determination criteria, such as excluding very large and/or integral membrane proteins, and entered them into the Seattle Structural Genomics Center for Infection Disease (SSGCID) structure determination pipeline. To maximize structural coverage of these targets, we applied an "ortholog rescue" strategy for those producing insoluble or difficult to crystallize proteins, resulting in the addition of 387 orthologs (or paralogs) from seven other Burkholderia species into the SSGCID pipeline. This structural genomics approach yielded structures from 31 putative essential targets from B. thailandensis, and 25 orthologs from other Burkholderia species, yielding an overall structural coverage for 49 of the 406 essential gene families, with a total of 88 depositions into the Protein Data Bank. Of these, 25 proteins have properties of a potential antimicrobial drug target i.e., no close human homolog, part of an essential metabolic pathway, and a deep binding pocket. We describe the structures of several potential drug targets in detail. CONCLUSIONS/SIGNIFICANCE: This collection of structures, solubility and experimental essentiality data provides a resource for development of drugs against infections and diseases caused by Burkholderia. All expression clones and proteins created in this study are freely available by request.


Assuntos
Infecções por Burkholderia/genética , Burkholderia pseudomallei/genética , Genômica , Redes e Vias Metabólicas/genética , Infecções por Burkholderia/tratamento farmacológico , Burkholderia pseudomallei/patogenicidade , Biologia Computacional , Bases de Dados de Proteínas , Desenho de Fármacos , Genes Essenciais , Genoma Bacteriano , Humanos , Filogenia , Conformação Proteica
10.
PLoS One ; 7(8): e43696, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22928018

RESUMO

Siderocalin (also lipocalin 2, NGAL or 24p3) binds iron as complexes with specific siderophores, which are low molecular weight, ferric ion-specific chelators. In innate immunity, siderocalin slows the growth of infecting bacteria by sequestering bacterial ferric siderophores. Siderocalin also binds simple catechols, which can serve as siderophores in the damaged urinary tract. Siderocalin has also been proposed to alter cellular iron trafficking, for instance, driving apoptosis through iron efflux via BOCT. An endogenous siderophore composed of gentisic acid (2,5-dihydroxybenzoic acid) substituents was proposed to mediate cellular efflux. However, binding studies reported herein contradict the proposal that gentisic acid forms high-affinity ternary complexes with siderocalin and iron, or that gentisic acid can serve as an endogenous siderophore at neutral pH. We also demonstrate that siderocalin does not induce cellular iron efflux or stimulate apoptosis, questioning the role siderocalin plays in modulating iron metabolism.


Assuntos
Proteínas de Fase Aguda/farmacologia , Apoptose/efeitos dos fármacos , Gentisatos/metabolismo , Hematopoese , Ferro/metabolismo , Lipocalinas/farmacologia , Proteínas Proto-Oncogênicas/farmacologia , Proteínas de Fase Aguda/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Células HeLa , Humanos , Lipocalina-2 , Lipocalinas/química , Camundongos , Modelos Moleculares , Conformação Proteica , Proteínas Proto-Oncogênicas/química
11.
ACS Chem Biol ; 6(12): 1327-31, 2011 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-21978368

RESUMO

The innate immune system antibacterial protein Siderocalin (Scn) binds ferric carboxymycobactin (CMB) and also several catecholate siderophores. Although the recognition of catecholates by Scn has been thoroughly investigated, the binding interactions of Scn with the full spectrum of CMB isoforms have not been studied. Here we show that Scn uses different binding modes for the limited subset of bound CMB isoforms, resulting in a range of binding affinities that are much weaker than other siderophore targets of Scn. Understanding the binding interaction between Scn and CMBs provides clues for the influence of Scn on mycobacterial iron acquisition.


Assuntos
Proteínas de Fase Aguda/fisiologia , Proteínas de Transporte/fisiologia , Ferro/metabolismo , Lipocalinas/fisiologia , Mycobacterium tuberculosis/metabolismo , Oxazóis/metabolismo , Proteínas Proto-Oncogênicas/fisiologia , Humanos , Imunidade Inata , Quelantes de Ferro/metabolismo , Quelantes de Ferro/farmacologia , Lipocalina-2 , Modelos Moleculares , Conformação Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Oxazóis/química , Eletricidade Estática
12.
BMC Struct Biol ; 11: 39, 2011 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-21995815

RESUMO

BACKGROUND: Ribose-5-phosphate isomerase is an enzyme that catalyzes the interconversion of ribose-5-phosphate and ribulose-5-phosphate. This family of enzymes naturally occurs in two distinct classes, RpiA and RpiB, which play an important role in the pentose phosphate pathway and nucleotide and co-factor biogenesis. RESULTS: Although RpiB occurs predominantly in bacteria, here we report crystal structures of a putative RpiB from the pathogenic fungus Coccidioides immitis. A 1.9 Å resolution apo structure was solved by combined molecular replacement and single wavelength anomalous dispersion (SAD) phasing using a crystal soaked briefly in a solution containing a high concentration of iodide ions. RpiB from C. immitis contains modest sequence and high structural homology to other known RpiB structures. A 1.8 Å resolution phosphate-bound structure demonstrates phosphate recognition and charge stabilization by a single positively charged residue whereas other members of this family use up to five positively charged residues to contact the phosphate of ribose-5-phosphate. A 1.7 Å resolution structure was obtained in which the catalytic base of C. immitis RpiB, Cys76, appears to form a weakly covalent bond with the central carbon of malonic acid with a bond distance of 2.2 Å. This interaction may mimic that formed by the suicide inhibitor iodoacetic acid with RpiB. CONCLUSION: The C. immitis RpiB contains the same fold and similar features as other members of this class of enzymes such as a highly reactive active site cysteine residue, but utilizes a divergent phosphate recognition strategy and may recognize a different substrate altogether.


Assuntos
Aldose-Cetose Isomerases/química , Coccidioides/enzimologia , Aldose-Cetose Isomerases/genética , Aldose-Cetose Isomerases/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Iodetos/química , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribulosefosfatos/química , Ribulosefosfatos/metabolismo , Alinhamento de Sequência , Especificidade por Substrato
13.
Artigo em Inglês | MEDLINE | ID: mdl-21904066

RESUMO

Cystathionine γ-synthase (CGS) is a transulfurication enzyme that catalyzes the first specific step in L-methionine biosynthesis by the reaction of O(4)-succinyl-L-homoserine and L-cysteine to produce L-cystathionine and succinate. Controlling the first step in L-methionine biosythesis, CGS is an excellent potential drug target. Mycobacterium ulcerans is a slow-growing mycobacterium that is the third most common form of mycobacterial infection, mainly infecting people in Africa, Australia and Southeast Asia. Infected patients display a variety of skin ailments ranging from indolent non-ulcerated lesions as well as ulcerated lesions. Here, the crystal structure of CGS from M. ulcerans covalently linked to the cofactor pyridoxal phosphate (PLP) is reported at 1.9 Šresolution. A second structure contains PLP as well as a highly ordered HEPES molecule in the active site acting as a pseudo-ligand. These results present the first structure of a CGS from a mycobacterium and allow comparison with other CGS enzymes. This is also the first structure reported from the pathogen M. ulcerans.


Assuntos
Carbono-Oxigênio Liases/química , Mycobacterium ulcerans/enzimologia , Domínio Catalítico , Modelos Moleculares , Estrutura Quaternária de Proteína , Eletricidade Estática
14.
J Immunol ; 182(8): 4947-56, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19342674

RESUMO

Antimicrobial proteins comprise a significant component of the acute innate immune response to infection. They are induced by pattern recognition receptors as well as by cytokines of the innate and adaptive immune pathways and play important roles in infection control and immunomodulatory homeostasis. Lipocalin 2 (siderocalin, NGAL, 24p3), a siderophore-binding antimicrobial protein, is critical for control of systemic infection with Escherichia coli; however, its role in mucosal immunity in the respiratory tract is unknown. In this study, we found that lipocalin 2 is rapidly and robustly induced by Klebsiella pneumoniae infection and is TLR4 dependent. IL-1beta and IL-17 also individually induce lipocalin 2. Mucosal administration of IL-1beta alone could reconstitute the lipocalin 2 deficiency in TLR4 knockout animals and rescue them from infection. Lipocalin 2-deficient animals have impaired lung bacterial clearance in this model and mucosal reconstitution of lipocalin 2 protein in these animals resulted in rescue of this phenotype. We conclude that lipocalin 2 is a crucial component of mucosal immune defense against pulmonary infection with K. pneumoniae.


Assuntos
Proteínas de Fase Aguda/imunologia , Proteínas de Fase Aguda/metabolismo , Infecções por Klebsiella/imunologia , Infecções por Klebsiella/metabolismo , Lipocalinas/imunologia , Lipocalinas/metabolismo , Proteínas Oncogênicas/imunologia , Proteínas Oncogênicas/metabolismo , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Fase Aguda/genética , Animais , Brônquios/metabolismo , Linhagem Celular , Epitélio/metabolismo , Humanos , Interleucina-17/farmacologia , Interleucina-1beta/farmacologia , Infecções por Klebsiella/genética , Infecções por Klebsiella/patologia , Lipocalina-2 , Lipocalinas/genética , Camundongos , Camundongos Knockout , Proteínas Oncogênicas/genética , Pneumonia Bacteriana/genética , Pneumonia Bacteriana/patologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/imunologia
15.
Proc Natl Acad Sci U S A ; 106(10): 3913-8, 2009 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-19237579

RESUMO

Here, we report that lipocalin 2 (Lcn2) promotes breast cancer progression, and we identify the mechanisms underlying this function. We first found that Lcn2 levels were consistently associated with invasive breast cancer in human tissue and urine samples. To investigate the function of Lcn2 in breast cancer progression, Lcn2 was overexpressed in human breast cancer cells and was found to up-regulate mesenchymal markers, including vimentin and fibronectin, down-regulate the epithelial marker E-cadherin, and significantly increase cell motility and invasiveness. These changes in marker expression and cell motility are hallmarks of an epithelial to mesenchymal transition (EMT). In contrast, Lcn2 silencing in aggressive breast cancer cells inhibited cell migration and the mesenchymal phenotype. Furthermore, reduced expression of estrogen receptor (ER) alpha and increased expression of the key EMT transcription factor Slug were observed with Lcn2 expression. Overexpression of ERalpha in Lcn2-expressing cells reversed the EMT and reduced Slug expression, suggesting that ERalpha negatively regulates Lcn2-induced EMT. Finally, orthotopic studies demonstrated that Lcn2-expressing breast tumors displayed a poorly differentiated phenotype and showed increased local tumor invasion and lymph node metastasis. Taken together, these in vitro, in vivo, and human studies demonstrate that Lcn2 promotes breast cancer progression by inducing EMT through the ERalpha/Slug axis and may be a useful biomarker of breast cancer.


Assuntos
Proteínas de Fase Aguda/metabolismo , Neoplasias da Mama/patologia , Lipocalinas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Fase Aguda/urina , Animais , Neoplasias da Mama/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Progressão da Doença , Endotélio/patologia , Receptor alfa de Estrogênio/metabolismo , Feminino , Inativação Gênica , Humanos , Lipocalina-2 , Lipocalinas/urina , Metástase Linfática , Mesoderma/patologia , Camundongos , Invasividade Neoplásica , Estadiamento de Neoplasias , Fenótipo , Proteínas Proto-Oncogênicas/urina , Fatores de Transcrição da Família Snail , Fatores de Transcrição/metabolismo
16.
J Am Chem Soc ; 130(34): 11524-34, 2008 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-18680288

RESUMO

The siderophore enterobactin (Ent) is produced by enteric bacteria to mediate iron uptake. Ent scavenges iron and is taken up by the bacteria as the highly stable ferric complex [Fe (III)(Ent)] (3-). This complex is also a specific target of the mammalian innate immune system protein, Siderocalin (Scn), which acts as an antibacterial agent by specifically sequestering siderophores and their ferric complexes during infection. Recent literature suggesting that Scn may also be involved in cellular iron transport has increased the importance of understanding the mechanism of siderophore interception and clearance by Scn; Scn is observed to release iron in acidic endosomes and [Fe (III)(Ent)] (3-) is known to undergo a change from catecholate to salicylate coordination in acidic conditions, which is predicted to be sterically incompatible with the Scn binding pocket (also referred to as the calyx). To investigate the interactions between the ferric Ent complex and Scn at different pH values, two recombinant forms of Scn with mutations in three residues lining the calyx were prepared: Scn-W79A/R81A and Scn-Y106F. Binding studies and crystal structures of the Scn-W79A/R81A:[Fe (III)(Ent)] (3-) and Scn-Y106F:[Fe (III)(Ent)] (3-) complexes confirm that such mutations do not affect the overall conformation of the protein but do weaken significantly its affinity for [Fe (III)(Ent)] (3-). Fluorescence, UV-vis, and EXAFS spectroscopies were used to determine Scn/siderophore dissociation constants and to characterize the coordination mode of iron over a wide pH range, in the presence of both mutant proteins and synthetic salicylate analogues of Ent. While Scn binding hinders salicylate coordination transformation, strong acidification results in the release of iron and degraded siderophore. Iron release may therefore result from a combination of Ent degradation and coordination change.


Assuntos
Enterobacteriaceae/química , Enterobactina/química , Ferro/metabolismo , Mamíferos/imunologia , Sideróforos/química , Animais , Sítios de Ligação , Transporte Biológico , Enterobacteriaceae/metabolismo , Enterobactina/metabolismo , Compostos Férricos/química , Compostos Férricos/metabolismo , Concentração de Íons de Hidrogênio , Mamíferos/metabolismo , Estrutura Molecular , Salicilatos/química , Salicilatos/metabolismo , Sideróforos/metabolismo , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA