Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 10(18)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33958398

RESUMO

Since the 1990s, Brucella strains have been isolated from a wide variety of marine mammal species. We report the first complete genome sequence of a Brucella strain isolated from a hooded seal (Cystophora cristata), Brucella pinnipedialis strain 23a-1 of sequence type 54, found in the North Atlantic Ocean surrounding Norway.

2.
Sci Rep ; 7: 44420, 2017 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-28300153

RESUMO

Twenty-one small Gram-negative motile coccobacilli were isolated from 15 systemically diseased African bullfrogs (Pyxicephalus edulis), and were initially identified as Ochrobactrum anthropi by standard microbiological identification systems. Phylogenetic reconstructions using combined molecular analyses and comparative whole genome analysis of the most diverse of the bullfrog strains verified affiliation with the genus Brucella and placed the isolates in a cluster containing B. inopinata and the other non-classical Brucella species but also revealed significant genetic differences within the group. Four representative but molecularly and phenotypically diverse strains were used for in vitro and in vivo infection experiments. All readily multiplied in macrophage-like murine J774-cells, and their overall intramacrophagic growth rate was comparable to that of B. inopinata BO1 and slightly higher than that of B. microti CCM 4915. In the BALB/c murine model of infection these strains replicated in both spleen and liver, but were less efficient than B. suis 1330. Some strains survived in the mammalian host for up to 12 weeks. The heterogeneity of these novel strains hampers a single species description but their phenotypic and genetic features suggest that they represent an evolutionary link between a soil-associated ancestor and the mammalian host-adapted pathogenic Brucella species.


Assuntos
Proteínas de Bactérias/genética , Brucellaceae/genética , Regulação Bacteriana da Expressão Gênica , Infecções por Bactérias Gram-Negativas/veterinária , Interações Hospedeiro-Patógeno , Filogenia , Animais , Animais de Zoológico , Anuros , Proteínas de Bactérias/metabolismo , Evolução Biológica , Brucellaceae/classificação , Brucellaceae/crescimento & desenvolvimento , Brucellaceae/metabolismo , Linhagem Celular , Flagelos/genética , Flagelos/metabolismo , Flagelos/ultraestrutura , Heterogeneidade Genética , Alemanha , Infecções por Bactérias Gram-Negativas/microbiologia , Fígado/microbiologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Tipagem de Sequências Multilocus , Baço/microbiologia , Tanzânia
3.
Int J Syst Evol Microbiol ; 66(5): 2090-2098, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26928956

RESUMO

Two slow-growing, Gram-negative, non-motile, non-spore-forming, coccoid bacteria (strains F60T and F965), isolated in Austria from mandibular lymph nodes of two red foxes (Vulpes vulpes), were subjected to a polyphasic taxonomic analysis. In a recent study, both isolates were assigned to the genus Brucella but could not be attributed to any of the existing species. Hence, we have analysed both strains in further detail to determine their exact taxonomic position and genetic relatedness to other members of the genus Brucella. The genome sizes of F60T and F965 were 3 236 779 and 3 237 765 bp, respectively. Each genome consisted of two chromosomes, with a DNA G+C content of 57.2 %. A genome-to-genome distance of >80 %, an average nucleotide identity (ANI) of 97 % and an average amino acid identity (AAI) of 98 % compared with the type species Brucella melitensis confirmed affiliation to the genus. Remarkably, 5 % of the entire genetic information of both strains was of non-Brucella origin, including as-yet uncharacterized bacteriophages and insertion sequences as well as ABC transporters and other genes of metabolic function from various soil-living bacteria. Core-genome-based phylogenetic reconstructions placed the novel species well separated from all hitherto-described species of the genus Brucella, forming a long-branched sister clade to the classical species of Brucella. In summary, based on phenotypic and molecular data, we conclude that strains F60T and F965 are members of a novel species of the genus Brucella, for which the name Brucella vulpis sp. nov. is proposed, with the type strain F60T ( = BCCN 09-2T = DSM 101715T).


Assuntos
Brucella/classificação , Raposas/microbiologia , Linfonodos/microbiologia , Filogenia , Animais , Áustria , Técnicas de Tipagem Bacteriana , Tipagem de Bacteriófagos , Composição de Bases , Brucella/genética , Brucella/isolamento & purificação , DNA Bacteriano/genética , Análise de Sequência de DNA
4.
Int J Syst Evol Microbiol ; 64(Pt 12): 4120-4128, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25242540

RESUMO

Two Gram-negative, non-motile, non-spore-forming coccoid bacteria (strains F8/08-60(T) and F8/08-61) isolated from clinical specimens obtained from baboons (Papio spp.) that had delivered stillborn offspring were subjected to a polyphasic taxonomic study. On the basis of 16S rRNA gene sequence similarities, both strains, which possessed identical sequences, were assigned to the genus Brucella. This placement was confirmed by extended multilocus sequence analysis (MLSA), where both strains possessed identical sequences, and whole-genome sequencing of a representative isolate. All of the above analyses suggested that the two strains represent a novel lineage within the genus Brucella. The strains also possessed a unique profile when subjected to the phenotyping approach classically used to separate species of the genus Brucella, reacting only with Brucella A monospecific antiserum, being sensitive to the dyes thionin and fuchsin, being lysed by bacteriophage Wb, Bk2 and Fi phage at routine test dilution (RTD) but only partially sensitive to bacteriophage Tb, and with no requirement for CO2 and no production of H2S but strong urease activity. Biochemical profiling revealed a pattern of enzyme activity and metabolic capabilities distinct from existing species of the genus Brucella. Molecular analysis of the omp2 locus genes showed that both strains had a novel combination of two highly similar omp2b gene copies. The two strains shared a unique fingerprint profile of the multiple-copy Brucella-specific element IS711. Like MLSA, a multilocus variable number of tandem repeat analysis (MLVA) showed that the isolates clustered together very closely, but represent a distinct group within the genus Brucella. Isolates F8/08-60(T) and F8/08-61 could be distinguished clearly from all known species of the genus Brucella and their biovars by both phenotypic and molecular properties. Therefore, by applying the species concept for the genus Brucella suggested by the ICSP Subcommittee on the Taxonomy of Brucella, they represent a novel species within the genus Brucella, for which the name Brucella papionis sp. nov. is proposed, with the type strain F8/08-60(T) ( = NCTC 13660(T) = CIRMBP 0958(T)).


Assuntos
Brucella/classificação , Papio/microbiologia , Filogenia , Animais , Técnicas de Tipagem Bacteriana , Brucella/genética , Brucella/isolamento & purificação , DNA Bacteriano/genética , Feminino , Genes Bacterianos , Dados de Sequência Molecular , Tipagem de Sequências Multilocus , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
5.
J Infect Dis ; 210(3): 467-72, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24558120

RESUMO

BACKGROUND: Recently, novel atypical Brucella strains isolated from humans and wild rodents have been reported. They are phenotypically close to Ochrobactrum species but belong to the genus Brucella, based on genetic relatedness, although genetic diversity is higher among the atypical Brucella strains than between the classic species. They were classified within or close to the novel species Brucella inopinata. However, with the exception of Brucella microti, the virulence of these novel strains has not been investigated in experimental models of infection. METHODS: The type species B. inopinata strain BO1 (isolated from a human) and Brucella species strain 83-210 (isolated from a wild Australian rodent) were investigated. A classic infectious Brucella reference strain, B. suis 1330, was also used. BALB/c, C57BL/6, and CD1 mice models and C57BL/6 mouse bone-marrow-derived macrophages (BMDMs) were used as infection models. RESULTS: Strains BO1 and 83-210 behaved similarly to reference strain 1330 in all mouse infection models: there were similar growth curves in spleens and livers of mice and similar intracellular replication rates in BMDMs. However, unlike strain 1330, strains BO1 and 83-210 showed lethality in the 3 mouse models. CONCLUSIONS: The novel atypical Brucella strains of this study behave like classic intracellular Brucella pathogens. In addition, they cause death in murine models of infection, as previously published for B. microti, another recently described environmental and wildlife species.


Assuntos
Brucella/classificação , Brucella/patogenicidade , Brucelose/microbiologia , Brucelose/mortalidade , Animais , Células Cultivadas , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos , Virulência
6.
J Infect Dis ; 207(5): 794-802, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23230062

RESUMO

BACKGROUND: Fluoroquinolone (FQ) resistance is increasing worldwide among Salmonella species. Among the mechanisms involved, increased efflux via the tripartite AcrAB-TolC efflux system is mainly modulated through control of expression via the ramRA regulatory locus gene products. Interestingly, in some reference strains these have also been experimentally shown to regulate cell invasion-related genes of the type III secretion system 1 (T3SS-1). In this study, we investigated whether natural mutations occurring in this locus in FQ-resistant S. enterica serovar Typhimurium epidemic clones resulted in the same effects. METHODS: Quantitative reverse transcription polymerase chain reaction and cell invasion assays were used to study 3 clinical FQ-resistant S. Typhimurium isolates representative of the DT104 and DT204 epidemic clones. For comparison, 3 control reference quinolone-susceptible strains were included. RESULTS: As previously shown, the investigated mutations altering RamR or its DNA-binding site increased expression of efflux genes dependently on ramA. However, the decreased expression of T3SS-1 genes previously reported was not always observed and seemed to be dependent on the genetic background of the FQ-resistant isolate. Indeed, a ramA-dependent decreased invasion of intestinal epithelial cells was only observed for a particular clinical ramR mutant. CONCLUSIONS: ramRA mutations occurring in clinical FQ-resistant S. Typhimurium isolates may negatively modulate their invasiveness but this is strain-dependent.


Assuntos
Proteínas de Bactérias/genética , Farmacorresistência Bacteriana , Fluoroquinolonas/farmacologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Repressoras/genética , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidade , Transativadores/genética , Fatores de Virulência/genética , Proteínas de Bactérias/metabolismo , Células Epiteliais/microbiologia , Perfilação da Expressão Gênica , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Repressoras/metabolismo , Infecções por Salmonella/epidemiologia , Infecções por Salmonella/microbiologia , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/isolamento & purificação , Transativadores/metabolismo , Virulência , Fatores de Virulência/metabolismo
7.
Microbiology (Reading) ; 158(Pt 10): 2642-2651, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22859617

RESUMO

Bacterial adaptation to environmental conditions is essential to ensure maximal fitness in the face of several stresses. In this context, two-component systems (TCSs) represent a predominant signal transduction mechanism, allowing an appropriate response to be mounted when a stimulus is sensed. As facultative intracellular pathogens, Brucella spp. face various environmental conditions, and an adequate response is required for a successful infection process. Recently, bioinformatic analysis of Brucella genomes predicted a set of 15 bona fide TCS pairs, among which some have been previously investigated. In this report, we characterized a new TCS locus called prlS/R, for probable proline sensor-regulator. It encodes a hybrid histidine kinase (PrlS) with an unusual Na(+)/solute symporter N-terminal domain and a transcriptional regulator (belonging to the LuxR family) (PrlR). In vitro, Brucella spp. with a functional PrlR/S system form bacterial aggregates, which seems to be an adaptive response to a hypersaline environment, while a prlS/R mutant does not. We identified ionic strength as a possible signal sensed by this TCS. Finally, this work correlates the absence of a functional PrlR/S system with the lack of hypersaline-induced aggregation in particular marine Brucella spp.


Assuntos
Proteínas de Bactérias/metabolismo , Brucella melitensis/fisiologia , Brucella melitensis/patogenicidade , Regulação Bacteriana da Expressão Gênica , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Transdução de Sinais , Animais , Proteínas de Bactérias/genética , Brucella melitensis/genética , Brucella melitensis/metabolismo , Brucelose/microbiologia , Células Cultivadas , Histidina Quinase , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Concentração Osmolar , Trofoblastos/microbiologia , Virulência
8.
Appl Environ Microbiol ; 78(5): 1534-43, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22210211

RESUMO

Brucellosis is one of the major bacterial zoonoses worldwide. In the past decade, an increasing number of atypical Brucella strains and species have been described. Brucella microti in particular has attracted attention, because this species not only infects mammalian hosts but also persists in soil. An environmental reservoir may pose a new public health risk, leading to the reemergence of brucellosis. In a polyphasic approach, comprising conventional microbiological techniques and extensive biochemical and molecular techniques, all currently available Brucella microti strains were characterized. While differing in their natural habitats and host preferences, B. microti isolates were found to possess identical 16S rRNA, recA, omp2a, and omp2b gene sequences and identical multilocus sequence analysis (MLSA) profiles at 21 different genomic loci. Only highly variable microsatellite markers of multiple-locus variable-number tandem repeat (VNTR) analysis comprising 16 loci (MLVA-16) showed intraspecies discriminatory power. In contrast, biotyping demonstrated striking differences within the genetically homologous species. The majority of the mammalian isolates agglutinated only with monospecific anti-M serum, whereas soil isolates agglutinated with anti-A, anti-M, and anti-R sera. Bacteria isolated from animal sources were lysed by phages F1, F25, Tb, BK2, Iz, and Wb, whereas soil isolates usually were not. Rough strains of environmental origin were lysed only by phage R/C. B. microti exhibited high metabolic activities similar to those of closely related soil organisms, such as Ochrobactrum spp. Each strain was tested with 93 different substrates and showed an individual metabolic profile. In summary, the adaptation of Brucella microti to a specific habitat or host seems to be a matter of gene regulation rather than a matter of gene configuration.


Assuntos
Biodiversidade , Brucella/classificação , Animais , Técnicas de Tipagem Bacteriana , Bacteriólise , Bacteriófagos/crescimento & desenvolvimento , Brucella/genética , Brucella/isolamento & purificação , Brucella/fisiologia , Brucelose/microbiologia , Brucelose/veterinária , Genes Bacterianos , Genótipo , Mamíferos/microbiologia , Tipagem de Sequências Multilocus , Fenótipo , Análise de Sequência de DNA , Microbiologia do Solo
9.
BMC Microbiol ; 9: 145, 2009 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-19619320

RESUMO

BACKGROUND: Since 1994, Brucella strains have been isolated from a wide range of marine mammals. They are currently recognized as two new Brucella species, B. pinnipedialis for the pinniped isolates and B. ceti for the cetacean isolates in agreement with host preference and specific phenotypic and molecular markers. In order to investigate the genetic relationships within the marine mammal Brucella isolates and with reference to terrestrial mammal Brucella isolates, we applied in this study the Multiple Loci VNTR (Variable Number of Tandem Repeats) Analysis (MLVA) approach. A previously published assay comprising 16 loci (MLVA-16) that has been shown to be highly relevant and efficient for typing and clustering Brucella strains from animal and human origin was used. RESULTS: 294 marine mammal Brucella strains collected in European waters from 173 animals and a human isolate from New Zealand presumably from marine origin were investigated by MLVA-16. Marine mammal Brucella isolates were shown to be different from the recognized terrestrial mammal Brucella species and biovars and corresponded to 3 major related groups, one specific of the B. ceti strains, one of the B. pinnipedialis strains and the last composed of the human isolate. In the B. ceti group, 3 subclusters were identified, distinguishing a cluster of dolphin, minke whale and porpoise isolates and two clusters mostly composed of dolphin isolates. These results were in accordance with published analyses using other phenotypic or molecular approaches, or different panels of VNTR loci. The B. pinnipedialis group could be similarly subdivided in 3 subclusters, one composed exclusively of isolates from hooded seals (Cystophora cristata) and the two others comprising other seal species isolates. CONCLUSION: The clustering analysis of a large collection of marine mammal Brucella isolates from European waters significantly strengthens the current view of the population structure of these two species, and their relative position with respect to the rest of the Brucella genus. MLVA-16 is confirmed as being a rapid, highly discriminatory and reproducible method to classify Brucella strains including the marine mammal isolates. The Brucella2009 MLVA-16 genotyping database available at http://mlva.u-psud.fr/ is providing a detailed coverage of all 9 currently recognized Brucella species.


Assuntos
Técnicas de Tipagem Bacteriana/métodos , Brucella/classificação , Caniformia/microbiologia , Cetáceos/microbiologia , Animais , Brucella/genética , Brucella/isolamento & purificação , Brucelose/microbiologia , Geografia , Humanos , Repetições Minissatélites , Nova Zelândia , Filogenia
10.
Microbes Infect ; 11(3): 361-6, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19397885

RESUMO

Marine mammal Brucella strains with different genomic characteristics according to distribution of IS711 elements in their genomes were analysed for their intracellular behaviour in human THP-1 macrophage-like cells. Seven different groups of marine mammal strains were identified including a human isolate from New Zealand presumably from marine origin. Entry and intracellular survival of strains representative of these groups in THP-1 human macrophage-like cells were analysed at several times of infection. Three patterns of infection were identified. The Brucella strain isolated from the human case from New Zealand, and two other groups of strains belonging to B. ceti or B. pinnipedialis were able to infect THP-1 macrophage cells to the same extent as the virulent strains B. suis 1330 or B. melitensis 16M. Three other groups of strains belonging to B. ceti or B. pinnipedialis were able to enter the cells as classical virulent strains but were eliminated after 48h. The last group was composed only of strains isolated from hooded seals (Cystophora cristata) and was even unable to enter and infect THP-1 macrophage cells. Thus, several groups of marine mammal Brucella strains appear to be non-infectious for human macrophages.


Assuntos
Brucella/imunologia , Brucella/patogenicidade , Brucelose/veterinária , Macrófagos/imunologia , Macrófagos/microbiologia , Mamíferos/microbiologia , Animais , Brucella/isolamento & purificação , Brucelose/microbiologia , Linhagem Celular , Humanos , Virulência
11.
Int J Med Microbiol ; 298(7-8): 561-9, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18272427

RESUMO

The AcrAB-TolC efflux system is involved in multidrug and bile salt resistances. In addition, this pump has recently been suggested to increase the invasion of Salmonella enterica serovar Typhimurium (S. Typhimurium) into host cells in vitro and could therefore have an important clinical relevance for multidrug-resistant strains. The aim of this study was to investigate the role of the TolC outer membrane channel and the AcrB transporter in the interaction of multidrug-resistant S. Typhimurium strains with eukaryotic cells, especially in relation to the expression of the type III secretion system-1 (TTSS-1) required for Salmonella invasion. Deletion of tolC led to a reduced transcription of the Salmonella pathogenicity island-1 genes sipA, invF and hilA, demonstrating that all genes required for TTSS-1 biosynthesis are down-regulated in this mutant. Consequently, tolC mutants secreted smaller amounts of the TTSS-1 effector proteins SipA and SipC, and invasion tests performed with one mutant showed that it was significantly less able to invade HT-29 epithelial cells than its parental strain. This control seems specific to the TTSS-1 among the three TTSS of Salmonella as no down-regulation of expression of TTSS-2 or flagella was observed in this mutant. By contrast, acrB mutants behaved as their parents except that they secrete a slightly greater amount of SipA and SipC proteins. These data indicate that TolC but not AcrB mediates the uptake of multidrug-resistant S. Typhimurium into target host cells. Therefore, this role of TolC in the invasion of the intestine in addition to its role in bile salt resistance reinforces the interest of targeting TolC for fighting multidrug-resistant Salmonella.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Salmonella typhimurium/patogenicidade , Fatores de Virulência/metabolismo , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Linhagem Celular Tumoral , Contagem de Colônia Microbiana , Proteínas de Ligação a DNA/biossíntese , Células Epiteliais/microbiologia , Deleção de Genes , Perfilação da Expressão Gênica , Ilhas Genômicas , Humanos , Proteínas de Membrana Transportadoras/genética , Proteínas dos Microfilamentos/biossíntese , Salmonella typhimurium/metabolismo , Transativadores/biossíntese , Fatores de Transcrição/biossíntese , Fatores de Virulência/genética
12.
Int J Syst Evol Microbiol ; 58(Pt 2): 375-82, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18218934

RESUMO

Two Gram-negative, non-motile, non-spore-forming, coccoid bacteria (strains CCM 4915(T) and CCM 4916), isolated from clinical specimens of the common vole Microtus arvalis during an epizootic in the Czech Republic in 2001, were subjected to a polyphasic taxonomic study. On the basis of 16S rRNA (rrs) and recA gene sequence similarities, both isolates were allocated to the genus Brucella. Affiliation to Brucella was confirmed by DNA-DNA hybridization studies. Both strains reacted equally with Brucella M-monospecific antiserum and were lysed by the bacteriophages Tb, Wb, F1 and F25. Biochemical profiling revealed a high degree of enzyme activity and metabolic capabilities not observed in other Brucella species. The omp2a and omp2b genes of isolates CCM 4915(T) and CCM 4916 were indistinguishable. Whereas omp2a was identical to omp2a of brucellae from certain pinniped marine mammals, omp2b clustered with omp2b of terrestrial brucellae. Analysis of the bp26 gene downstream region identified strains CCM 4915(T) and CCM 4916 as Brucella of terrestrial origin. Both strains harboured five to six copies of the insertion element IS711, displaying a unique banding pattern as determined by Southern blotting. In comparative multilocus VNTR (variable-number tandem-repeat) analysis (MLVA) with 296 different genotypes, the two isolates grouped together, but formed a separate cluster within the genus Brucella. Multilocus sequence typing (MLST) analysis using nine different loci also placed the two isolates separately from other brucellae. In the IS711-based AMOS PCR, a 1900 bp fragment was generated with the Brucella ovis-specific primers, revealing that the insertion element had integrated between a putative membrane protein and cboL, encoding a methyltransferase, an integration site not observed in other brucellae. Isolates CCM 4915(T) and CCM 4916 could be clearly distinguished from all known Brucella species and their biovars by means of both their phenotypic and molecular properties, and therefore represent a novel species within the genus Brucella, for which the name Brucella microti sp. nov. with the type strain CCM 4915(T) (=BCCN 07-01(T)=CAPM 6434(T)) is proposed.


Assuntos
Arvicolinae/microbiologia , Brucella/classificação , Brucella/isolamento & purificação , Brucelose/veterinária , Doenças dos Roedores/microbiologia , Animais , Proteínas da Membrana Bacteriana Externa/genética , Técnicas de Tipagem Bacteriana , Brucella/genética , Brucella/fisiologia , Brucelose/microbiologia , DNA Bacteriano/análise , Genes de RNAr , Genótipo , Repetições Minissatélites/genética , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Fenótipo , Filogenia , RNA Ribossômico 16S/genética , Recombinases Rec A/genética , Análise de Sequência de DNA , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA