Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 8086, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39278958

RESUMO

We previously reported that normothermic ex vivo kidney  perfusion (NEVKP) is superior in terms of organ protection compared to static cold storage (SCS), which is still the standard method of organ preservation, but the mechanisms are incompletely understood. We used a large animal kidney autotransplant model to evaluate mitochondrial function during organ preservation and after kidney transplantation, utilizing live cells extracted from fresh kidney tissue. Male porcine kidneys stored under normothermic perfusion showed preserved mitochondrial function and higher ATP levels compared to kidneys stored at 4 °C (SCS). Mitochondrial respiration and ATP levels were further enhanced when AP39, a mitochondria-targeted hydrogen sulfide donor, was administered during warm perfusion. Correspondingly, the combination of NEVKP and AP39 was associated with decreased oxidative stress and inflammation, and with improved graft function after transplantation. In conclusion, our findings suggest that the organ-protective effects of normothermic perfusion are mediated by maintenance of mitochondrial function and enhanced by AP39 administration. Activation of mitochondrial function through the combination of AP39 and normothermic perfusion could represent a new therapeutic strategy for long-term renal preservation.


Assuntos
Transplante de Rim , Rim , Mitocôndrias , Preservação de Órgãos , Perfusão , Isquemia Quente , Animais , Mitocôndrias/metabolismo , Rim/metabolismo , Preservação de Órgãos/métodos , Masculino , Suínos , Perfusão/métodos , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Trifosfato de Adenosina/metabolismo , Estresse Oxidativo , Compostos Organofosforados , Tionas
2.
Clin Proteomics ; 19(1): 14, 2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35568821

RESUMO

BACKGROUND: Accumulating evidence suggests that the androgen receptor (AR) and its endogenous ligands influence disease progression in breast cancer (BCa). However, AR-mediated changes in BCa differ among the various BCa subtypes according to their hormone receptor profile [i.e., presence/absence of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2, (HER2)]. Thus, we explored the androgen-regulated transcriptomic changes in the ER+PR+HER2+ BCa cell line, BT-474, and compared them with PR-mediated changes. METHODS: We performed RNA sequencing analysis in treated BT-474 cells with dihydrotestosterone (DHT) and progesterone. Validation of the top ten differentially androgen-regulated genes and a number of other genes found in enriched signaling pathways was performed by qRT-PCR in BT-474 and other BCa cell lines. In addition, a parallel reaction monitoring targeted proteomic approach was developed to verify selected transcripts at the protein level. RESULTS: In total 19,450 transcripts were detected, of which 224 were differentially regulated after DHT treatment. The increased expression of two well-known androgen-regulated genes, KLK2 (p < 0.05) and KLK3 (p < 0.001), confirmed the successful androgen stimulation in BT-474 cells. The transcription factor, ZBTB16, was the most highly upregulated gene, with ~ 1000-fold change (p < 0.001). Pathway enrichment analysis revealed downregulation of the DNA replication processes (p < 0.05) and upregulation of the androgen signaling and fatty acid metabolism pathways (p < 0.05). Changes related to progesterone treatment showed opposite effects in gene expression than DHT treatment. Similar expression profiles were observed among other BCa cell lines expressing high levels of AR (ZR75.1 and MBA-MB-453). The parallel reaction monitoring targeted proteomic analysis further confirmed that altered protein expression (KLK3, ALOX15B) in the supernatant and cell lysate of DHT-treated BT-474 cells, compared to control cells. DISCUSSION: Our findings suggest that AR modulates the metabolism of BT-474 cells by affecting the expression of a large number of genes and proteins. Based on further pathway analysis, we suggest that androgen receptor acts as a tumor suppressor in the BT-474 cells.

3.
Clin Proteomics ; 18(1): 27, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34794390

RESUMO

BACKGROUND AND AIMS: Liver transplantation (LT) can be offered to patients with Hepatocellular carcinoma (HCC) beyond Milan criteria. However, there are currently limited molecular markers on HCC explant histology to predict recurrence, which arises in up to 20% of LT recipients. The goal of our study was to derive a combined proteomic/transcriptomic signature on HCC explant predictive of recurrence post-transplant using unbiased, high-throughput approaches. METHODS: Patients who received a LT for HCC beyond Milan criteria in the context of hepatitis B cirrhosis were identified. Tumor explants from patients with post-transplant HCC recurrence (N = 7) versus those without recurrence (N = 4) were analyzed by mass spectrometry and gene expression array. Univariate analysis was used to generate a combined proteomic/transcriptomic signature linked to recurrence. Significantly predictive genes and proteins were verified and internally validated by immunoblotting and immunohistochemistry. RESULTS: Seventy-nine proteins and 636 genes were significantly differentially expressed in HCC tumors with subsequent recurrence (p < 0.05). Univariate survival analysis identified Aldehyde Dehydrogenase 1 Family Member A1 (ALDH1A1) gene (HR = 0.084, 95%CI 0.01-0.68, p = 0.0152), ALDH1A1 protein (HR = 0.039, 95%CI 0.16-0.91, p = 0.03), Galectin 3 Binding Protein (LGALS3BP) gene (HR = 7.14, 95%CI 1.20-432.96, p = 0.03), LGALS3BP protein (HR = 2.6, 95%CI 1.1-6.1, p = 0.036), Galectin 3 (LGALS3) gene (HR = 2.89, 95%CI 1.01-8.3, p = 0.049) and LGALS3 protein (HR = 2.6, 95%CI 1.2-5.5, p = 0.015) as key dysregulated analytes in recurrent HCC. In concordance with our proteome findings, HCC recurrence was linked to decreased ALDH1A1 and increased LGALS3 protein expression by Western Blot. LGALS3BP protein expression was validated in 29 independent HCC samples. CONCLUSIONS: Significantly increased LGALS3 and LGALS3BP gene and protein expression on explant were associated with post-transplant recurrence, whereas increased ALDH1A1 was associated with absence of recurrence in patients transplanted for HCC beyond Milan criteria. This combined proteomic/transcriptomic signature could help in predicting HCC recurrence risk and guide post-transplant surveillance.

4.
J Am Soc Nephrol ; 31(11): 2705-2724, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32900843

RESUMO

BACKGROUND: Antibody-mediated rejection (AMR) accounts for >50% of kidney allograft loss. Donor-specific antibodies (DSA) against HLA and non-HLA antigens in the glomeruli and the tubulointerstitium cause AMR while inflammatory cytokines such as TNFα trigger graft injury. The mechanisms governing cell-specific injury in AMR remain unclear. METHODS: Unbiased proteomic analysis of laser-captured and microdissected glomeruli and tubulointerstitium was performed on 30 for-cause kidney biopsy specimens with early AMR, acute cellular rejection (ACR), or acute tubular necrosis (ATN). RESULTS: A total of 107 of 2026 glomerular and 112 of 2399 tubulointerstitial proteins was significantly differentially expressed in AMR versus ACR; 112 of 2026 glomerular and 181 of 2399 tubulointerstitial proteins were significantly dysregulated in AMR versus ATN (P<0.05). Basement membrane and extracellular matrix (ECM) proteins were significantly decreased in both AMR compartments. Glomerular and tubulointerstitial laminin subunit γ-1 (LAMC1) expression decreased in AMR, as did glomerular nephrin (NPHS1) and receptor-type tyrosine-phosphatase O (PTPRO). The proteomic analysis revealed upregulated galectin-1, which is an immunomodulatory protein linked to the ECM, in AMR glomeruli. Anti-HLA class I antibodies significantly increased cathepsin-V (CTSV) expression and galectin-1 expression and secretion in human glomerular endothelial cells. CTSV had been predicted to cleave ECM proteins in the AMR glomeruli. Glutathione S-transferase ω-1, an ECM-modifying enzyme, was significantly increased in the AMR tubulointerstitium and in TNFα-treated proximal tubular epithelial cells. CONCLUSIONS: Basement membranes are often remodeled in chronic AMR. Proteomic analysis performed on laser-captured and microdissected glomeruli and tubulointerstitium identified early ECM remodeling, which may represent a new therapeutic opportunity.


Assuntos
Membrana Basal/metabolismo , Matriz Extracelular/metabolismo , Rejeição de Enxerto/metabolismo , Rejeição de Enxerto/patologia , Glomérulos Renais/patologia , Túbulos Renais/patologia , Adulto , Idoso , Aloenxertos/metabolismo , Aloenxertos/patologia , Anticorpos/metabolismo , Biópsia , Catepsinas/metabolismo , Linhagem Celular , Cisteína Endopeptidases/metabolismo , Matriz Extracelular/patologia , Feminino , Galectina 1/genética , Galectina 1/metabolismo , Expressão Gênica , Glutationa Transferase/metabolismo , Rejeição de Enxerto/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Glomérulos Renais/metabolismo , Transplante de Rim , Túbulos Renais/metabolismo , Laminina/metabolismo , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Necrose , Proteômica , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
5.
Mol Cell Proteomics ; 19(3): 501-517, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31879271

RESUMO

Chronic hyperglycemia is known to disrupt the proteolytic milieu, initiating compensatory and maladaptive pathways in the diabetic kidney. Such changes in intrarenal proteolysis are captured by the urinary peptidome. To elucidate the early kidney response to chronic hyperglycemia, we conducted a peptidomic investigation into urines from otherwise healthy youths with type 1 diabetes and their non-diabetic peers using unbiased and targeted mass spectrometry-based techniques. This cross-sectional study included two separate cohorts for the discovery (n = 30) and internal validation (n = 30) of differential peptide excretion. Peptide bioactivity was predicted using PeptideRanker and subsequently verified in vitro Proteasix and the Nephroseq database were used to identify putative proteases responsible for peptide generation and examine their expression in diabetic nephropathy. A total of 6550 urinary peptides were identified in the discovery analysis. We further examined the subset of 162 peptides, which were quantified across all thirty samples. Of the 15 differentially excreted peptides (p < 0.05), seven derived from a C-terminal region (589SGSVIDQSRVLNLGPITRK607) of uromodulin, a kidney-specific protein. Increased excretion of five uromodulin peptides was replicated in the validation cohort using parallel reaction monitoring (p < 0.05). One of the validated peptides (SGSVIDQSRVLNLGPI) activated NFκB and AP-1 signaling, stimulated cytokine release, and enhanced neutrophil migration in vitro. In silico analyses highlighted several potential proteases such as hepsin, meprin A, and cathepsin B to be responsible for generating these peptides. In summary, we identified a urinary signature of uromodulin peptides associated with early type 1 diabetes before clinical manifestations of kidney disease and discovered novel bioactivity of uromodulin peptides in vitro Our present findings lay the groundwork for future studies to validate peptide excretion in larger and broader populations, to investigate the role of bioactive uromodulin peptides in high glucose conditions, and to examine proteases that cleave uromodulin.


Assuntos
Diabetes Mellitus Tipo 1/urina , Peptídeos/urina , Uromodulina/urina , Adolescente , Linhagem Celular , Quimiotaxia de Leucócito/efeitos dos fármacos , Citocinas/urina , Células Epiteliais/metabolismo , Feminino , Humanos , Masculino , Neutrófilos/efeitos dos fármacos , Neutrófilos/fisiologia , Peptídeos/farmacologia , Proteômica , Uromodulina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA