Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 79(7): 2503-2516, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36863935

RESUMO

BACKGROUND: In recent years, biofungicides have drawn increasing interest in vineyards for a more sustainable integrated and copper-limited pest management. Among alternatives, botanicals could represent valuable tools, being rich sources of biologically active compounds. Conversely to the well-known antioxidant and biological properties in relation to health benefits, investigation on bioactivity of hot pungent Capsicum sp. products against fungal phytopathogens in vineyards is still scarce. Therefore, the present study aimed at exploring the biologically active compounds profile of a chili pepper (Capsicum chinense Jacq.) pod extract and its antimicrobial properties against some of the major fungal and Oomycetes pathogens of grapevine, including Botrytis cinerea Pers., Guignardia bidwellii (Ellis) Viala & Ravaz and Plasmopara viticola (Berk. & M.A. Curtis) Berl. & De Toni. RESULTS: The ethyl acetate-extracted oleoresin from the most pungent varieties was rich in capsaicinoids and polyphenols (371.09 and 268.5 µg mg-1 dry weight, respectively). Capsaicin and dihydrocapsaicin, hydroxycinnamic and hydroxybenzoic acids and quercetin derivatives were the most abundant, while carotenoids represented only a minor fraction. The oleoresin was efficient to inhibit all three pathogenic fungi and ED50 values were determined, evidencing that G. bidwellii was the more sensitive (0.233 ± 0.034 mg mL-1 ). CONCLUSION: The results suggested a potentiality of chili pepper extract for the control of some important grapevine pathogens, their possible application being helpful for the recommended limitation in extensive use of copper in vineyard. The complex mixture of high amounts of capsaicinoids, associated to specific phenolic acids and other minor bioactive components might contribute to the observed antimicrobial action of chili pepper extract. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Anti-Infecciosos , Capsicum , Oomicetos , Antifúngicos , Cobre , Anti-Infecciosos/farmacologia , Extratos Vegetais/farmacologia
2.
J Agric Food Chem ; 71(11): 4488-4497, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36912343

RESUMO

Grapevine co-products, as canes, represent a source of compounds of interest to control vineyard diseases with a sustainable approach. We chose to study an extract that we produced from grapevine trunk and roots. This extract, enriched in complex stilbenes, strongly reduced mycelial growth and spore germination of Botrytis cinerea, the fungal agent causing gray mold. The most active stilbenes were resveratrol, r-viniferin, and ε-viniferin. This grapevine extract also inhibited the production of Botrytis laccases. Conversely, Botrytis secretome metabolized resveratrol into δ-viniferin and pallidol (2 dimers); and ε-viniferin, a dimer, into hopeaphenol, r-viniferin, and r2-viniferin (3 tetramers). r-Viniferin and hopeaphenol (2 tetramers) were not metabolized. The biotransformed extract maintained an effective antimycelial activity. This study provides evidence that a grapevine extract enriched in oligomerized stilbenes exerts different anti-Botrytis activities, notwithstanding the ability of the fungus to metabolize some stilbenes.


Assuntos
Estilbenos , Vitis , Resveratrol/farmacologia , Antifúngicos , Vitis/metabolismo , Estilbenos/farmacologia , Estilbenos/metabolismo , Extratos Vegetais/farmacologia
3.
J Agric Food Chem ; 69(6): 1781-1795, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33529021

RESUMO

Three recognized plant defense stimulators (PDS), methyl jasmonate (MeJA), benzothiadiazole (BTH) and phosphonates (PHOS), were sprayed on grapevine Vitis vinifera cuttings and conferred resistance to the biotrophic pathogen Plasmopara viticola. The effects on molecular defense-related genes and polyphenol content (stilbenes and flavanols) were revealed at 6 and 8 days post-elicitation. The transcript accumulation was consistent with the signaling pathway specific to the elicitor, salicylic acid for BTH, and jasmonic acid for MeJA, with some cross-talks. PHOS tended to modulate the defense responses like BTH. Moreover, in response to a downy mildew inoculation, the leaves pre-treated with PHOS and BTH overproduced pterostilbene, and after MeJA treatment, piceids and ε-viniferin, compared to uninoculated elicitor-treated leaves. These results provide evidence of the different modes of action of PDS and their role in sustainable viticulture.


Assuntos
Oomicetos , Vitis , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Doenças das Plantas
4.
Viruses ; 12(11)2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33213034

RESUMO

To provide insights into phage-host interactions during winemaking, we assessed whether phenolic compounds modulate the phage predation of Oenococcus oeni. Centrifugal partition chromatography was used to fractionate the phenolic compounds of a model red wine. The ability of lytic oenophage OE33PA to kill its host was reduced in the presence of two collected fractions in which we identified five compounds. Three, namely, quercetin, myricetin and p-coumaric acid, significantly reduced the phage predation of O. oeni when provided as individual pure molecules, as also did other structurally related compounds such as cinnamic acid. Their presence was correlated with a reduced adsorption rate of phage OE33PA on its host. Strikingly, none of the identified compounds affected the killing activity of the distantly related lytic phage Vinitor162. OE33PA and Vinitor162 were shown to exhibit different entry mechanisms to penetrate into bacterial cells. We propose that ligand-receptor interactions that mediate phage adsorption to the cell surface are diverse in O. oeni and are subject to differential interference by phenolic compounds. Their presence did not induce any modifications in the cell surface as visualized by TEM. Interestingly, docking analyses suggest that quercetin and cinnamic acid may interact with the tail of OE33PA and compete with host recognition.


Assuntos
Bacteriófagos/efeitos dos fármacos , Oenococcus/virologia , Fenóis/farmacologia , Vinho/análise , Ácidos Cumáricos/química , Flavonoides/química , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Simulação de Acoplamento Molecular , Oenococcus/efeitos dos fármacos , Fenóis/química
5.
Appl Environ Microbiol ; 85(19)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31375489

RESUMO

Oenococcus oeni is the lactic acid bacterium (LAB) that most commonly drives malolactic fermentation in wine. Although oenococcal prophages are highly prevalent, their implications on bacterial fitness have remained unexplored and more research is required in this field. An important step toward achieving this goal is the ability to produce isogenic pairs of strains that differ only by the lysogenic presence of a given prophage, allowing further comparisons of different phenotypic traits. A novel protocol for the rapid isolation of lysogens is presented. Bacteria were first picked from the center of turbid plaques produced by temperate oenophages on a sensitive nonlysogenic host. When streaked onto an agar medium containing red grape juice (RGJ), cells segregated into white and red colonies. PCR amplifications with phage-specific primers demonstrated that only lysogens underwent white-red morphotypic switching. The method proved successful for various oenophages irrespective of their genomic content and attachment site used for site-specific recombination in the bacterial chromosome. The color switch was also observed when a sensitive nonlysogenic strain was infected with an exogenously provided lytic phage, suggesting that intracolonial lysis triggers the change. Last, lysogens also produced red colonies on white grape juice agar supplemented with polyphenolic compounds. We posit that spontaneous prophage excision produces cell lysis events in lysogenic colonies growing on RGJ agar, which, in turn, foster interactions between lysed materials and polyphenolic compounds to yield colonies easily distinguishable by their red color. Furthermore, the technique was used successfully with other species of LAB.IMPORTANCE The presence of white and red colonies on red grape juice (RGJ) agar during enumeration of Oenococcus oeni in wine samples is frequently observed by stakeholders in the wine industry. Our study brings an explanation for this intriguing phenomenon and establishes a link between the white-red color switch and the lysogenic state of O. oeni It also provides a simple and inexpensive method to distinguish between lysogenic and nonlysogenic derivatives in O. oeni with a minimum of expended time and effort. Noteworthy, the protocol could be adapted to two other species of LAB, namely, Leuconostoc citreum and Lactobacillus plantarum It could be an effective tool to provide genetic, ecological, and functional insights into lysogeny and aid in improving biotechnological processes involving members of the lactic acid bacterium (LAB) family.


Assuntos
Ágar/química , Meios de Cultura/química , Sucos de Frutas e Vegetais , Lisogenia , Oenococcus/fisiologia , Vitis , Contagem de Colônia Microbiana , Oenococcus/genética , Fenótipo , Filogenia , Prófagos , Vinho/microbiologia
6.
Food Funct ; 9(5): 2922-2930, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29741190

RESUMO

Little is still known about brain protein synthesis. In order to increase our knowledge of it, we aimed to modulate brain protein synthesis rates through aging, variations in nutritional state (fed state vs. fasted state), high sucrose diet and micronutrient supplementation. Four groups of 16 month-old male rats were fed for five months with a diet containing either 13% or 62% sucrose (wheat starch was replaced with sucrose), supplemented or not with rutin (5 g kg-1 diet), vitamin E (4×), A (2×), D (5×), selenium (10×) and zinc (+44%) and compared with an adult control group. We measured cerebellum protein synthesis and hippocampus gene expression of antioxidant enzymes, inflammatory cytokines and transcription factors. We showed that cerebellum protein synthesis was unchanged by the nutritional state, decreased during aging (-8%), and restored to the adult level by micronutrient supplementation. Sucrose diet did not change protein synthesis but reduced the protein content. Micronutrient supplementation had no effect in sucrose fed rats. Hippocampus gene expressions were affected by age (an increase of TNF-α), sucrose treatment (an increase of IL-1ß and IL-6), and micronutrient supplementation (a decrease of heme oxygenase, catalase, glutathione peroxidase, TNF-α, and Nrf2). We noted that cerebellum protein synthesis and hippocampus TNF-α gene expression were modulated by the same factors: they were affected by aging and micronutrient supplementation and unchanged by feeding and by high sucrose diet.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Sacarose Alimentar/metabolismo , Micronutrientes/metabolismo , Biossíntese de Proteínas , Rutina/metabolismo , Envelhecimento/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Sacarose Alimentar/efeitos adversos , Suplementos Nutricionais/análise , Hipocampo/efeitos dos fármacos , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Micronutrientes/farmacologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estado Nutricional , Biossíntese de Proteínas/efeitos dos fármacos , Ratos , Ratos Wistar , Rutina/farmacologia , Selênio/metabolismo , Selênio/farmacologia , Vitamina A/metabolismo , Vitamina A/farmacologia , Vitamina D/metabolismo , Vitamina D/farmacologia , Vitamina E/metabolismo , Vitamina E/farmacologia , Zinco/metabolismo , Zinco/farmacologia
7.
J Agric Food Chem ; 66(13): 3338-3350, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29557656

RESUMO

Grapevine is subject to diseases that affect yield and wine quality caused by various pathogens including Botrytis cinerea. To limit the use of fungicides, an alternative is to use plant elicitors such as benzothiadiazole (BTH). We investigated the effect of a fungicide (Pyrimethanil) and an elicitor (benzothiadiazole) on plant defenses. Applications for two consecutive years in the vineyard significantly reduced gray mold. Two and seven days after treatments, the expressions of 48 genes involved in defenses showed differential modulation (up- or down-regulation) depending on treatment. Some genes were identified as potential markers of protection and were linked to an increase in total polyphenols (TP) in leaves. Surprisingly, the fungicide also induced the expression of defense genes and increased the polyphenol content. This suggests that BTH acts as an efficient elicitor in the vineyard and that Pyrimethanil may act, in part, as a defense-inducing agent on the vine.


Assuntos
Botrytis/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Doenças das Plantas/microbiologia , Pirimidinas/farmacologia , Tiadiazóis/farmacologia , Vitis/microbiologia , Botrytis/fisiologia , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Vitis/genética , Vitis/imunologia
8.
J Agric Food Chem ; 65(40): 8884-8891, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-28925259

RESUMO

Pine knot extract from Pinus pinaster byproducts was characterized by UHPLC-DAD-MS and NMR. Fourteen polyphenols divided into four classes were identified as follows: lignans (nortrachelogenin, pinoresinol, matairesinol, isolariciresinol, secoisolariciresinol), flavonoids (pinocembrin, pinobanksin, dihydrokaempferol, taxifolin), stilbenes (pinosylvin, pinosylvin monomethyl ether, pterostilbene), and phenolic acids (caffeic acid, ferulic acid). The antifungal potential of pine knot extract, as well as the main compounds, was tested in vitro against Plasmopara viticola. The ethanolic extract showed a strong antimildew activity. In addition, pinosylvins and pinocembrin demonstrated significant inhibition of zoospore mobility and mildew development. These findings strongly suggest that pine knot is a potential biomass that could be used as a natural antifungal product.


Assuntos
Antifúngicos/farmacologia , Oomicetos/efeitos dos fármacos , Pinus/química , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Antifúngicos/química , Antifúngicos/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Polifenóis/química , Polifenóis/isolamento & purificação
9.
J Agric Food Chem ; 65(24): 4952-4960, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28551990

RESUMO

Grapevine stem extracts are viticulture byproducts rich in stilbenes that are increasingly studied for their potential biological activities. This study aimed to investigate some biological activities of a grape byproduct with high stilbenoid content and to point out the molecules responsible of these beneficial activities. As a consequence, the extract was subjected to a bioguided fractionation and separation by centrifugal partition chromatography. The obtained fractions were characterized by liquid chromatography coupled to mass spectrometry and nuclear magnetic resonance. Fractions were purified further by column chromatography and resulted in the purification of the main constituents. Thirteen stilbenes have been quantified. The most abundant compounds were ε-viniferin, resveratrol, and, in lesser amounts, isohopeaphenol and ampelopsin A. The extract, fractions, and major stilbenes were tested for their antioxidant activity by oxygen radical absorbance capacity and their cyprotective effects against ß-amyloid on rat pheochromocytoma cells. Among them, fraction 5 showed significant antioxidant activity and fraction 2 had a significant cytoprotective effect against ß-amyloid-induced toxicity. Two putative inhibitors of ß-amyloid toxicity have been identified: ampelopsin A and piceatannol.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Estilbenos/química , Estilbenos/farmacologia , Vitis/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Estrutura Molecular , Células PC12 , Caules de Planta/química , Substâncias Protetoras/análise , Substâncias Protetoras/farmacologia , Ratos
10.
Pharm Biol ; 55(1): 880-887, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28152658

RESUMO

CONTEXT: Frankenia pulverulenta L. (Frankeniaceae) is a medicinal species with carminative, analgesic and antiviral properties. However, phytochemical investigations, antioxidant and neuroprotective capacities of this plant remain unclear. OBJECTIVE: This work assesses the phenolic composition of F. pulverulenta shoot and root and evaluates their antioxidant and neuroprotective capacities. MATERIALS AND METHODS: Successive fractionation of F. pulverulenta shoot and root using 6 solvents were used. Antioxidant capacity of these fractions was assessed through four in vitro tests (DPPH, ABTS, Fe-chelating activity and ORAC). Phenolic identification, purification as well as neuroprotective activity of ethyl acetate (EtOAc) fraction and purified molecules were assessed. RESULTS: Among the tested fractions, EtOAc shoot and root fractions possessed considerable phenolic contents (383 and 374 mg GAE/g E, respectively) because of their important ORAC (821 and 1054 mg of TE/g E), DPPH (586 and 750 mg of TE/g) and ABTS (1453 and 1319 mg of TE/g) results. Moreover, gallic acid, quercetin, quercetin galloyl glucoside, trigalloyl hexoside, procyanidin dimers and sulfated flavonoids were identified by LC-DAD-ESI-MS for the first time in this species. The relevant cytoprotective capacity (at 300 µg/mL) against ß-amyloid peptide induced toxicity in PC12 cells of EtOAc fractions were corroborated with the chemical composition. In addition, purified molecules were tested for their ORAC and neuroprotective activity. Quercetin showed the best ORAC value (33.55 mmol TE/g polyphenols); nevertheless, procyanidin dimer exhibited an exceptionally efficient neuroprotective activity (100% of viability at 50 µg/mL). DISCUSSION AND CONCLUSIONS: These findings suggest that this halophyte is a promising source of antioxidant and neuroprotective molecules for pharmaceutical purposes.


Assuntos
Antioxidantes/isolamento & purificação , Cromatografia Líquida de Alta Pressão/métodos , Fármacos Neuroprotetores/isolamento & purificação , Fenóis/isolamento & purificação , Plantas Medicinais/química , Animais , Antioxidantes/farmacologia , Fármacos Neuroprotetores/farmacologia , Células PC12 , Fenóis/análise , Ratos , Espectrometria de Massas por Ionização por Electrospray
11.
Food Chem ; 202: 212-20, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26920287

RESUMO

Several cultivars of peach fruit (Prunus persica L.) were investigated. Their phenolic composition and concentration were assessed by LC-MS. Concentrations were calculated in mg per g of dry weight extract. Their antioxidant capacity (Folin-Ciocalteu, ORAC, DPPH, ABTS, PFRAP and ICA), inhibitory property against ß-amyloid and α-synuclein fibril formation and protective capacity against Aß-induced toxicity on PC12 cell lines (viability assessed by MTT assay and intracellular ROS production by DCFH-DA assay) were evaluated. Fifteen different phenolic compounds were identified and quantified. In particular, new isorhamnetin derivatives were identified. Phenolic contents were ranged between 19 and 82mg/g. Spring Belle extract had the highest content and Romea the lowest. Except for the ICA assay, a good correlation between phenolic content and the antioxidant capacities of peach fruit extracts was found, indicating that phenolic compounds are major contributors to their antioxidant capacity. Results indicate that the phenolic extract of peach cultivars inhibits Aß and αS fibril formation and protects PC12 cell lines against Aß-induced toxicity.


Assuntos
Frutas/química , Fenóis/análise , Prunus persica , Animais , Antioxidantes/análise , Antioxidantes/farmacologia , Cromatografia Líquida , Fluoresceínas , Espectrometria de Massas , Células PC12 , Fenóis/química , Fenóis/farmacologia , Ratos , Espécies Reativas de Oxigênio/química
12.
Plant Physiol ; 170(1): 367-84, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26518342

RESUMO

The lipid composition of plasma membrane (PM) and the corresponding detergent-insoluble membrane (DIM) fraction were analyzed with a specific focus on highly polar sphingolipids, so-called glycosyl inositol phosphorylceramides (GIPCs). Using tobacco (Nicotiana tabacum) 'Bright Yellow 2' cell suspension and leaves, evidence is provided that GIPCs represent up to 40 mol % of the PM lipids. Comparative analysis of DIMs with the PM showed an enrichment of 2-hydroxylated very-long-chain fatty acid-containing GIPCs and polyglycosylated GIPCs in the DIMs. Purified antibodies raised against these GIPCs were further used for immunogold-electron microscopy strategy, revealing the distribution of polyglycosylated GIPCs in domains of 35 ± 7 nm in the plane of the PM. Biophysical studies also showed strong interactions between GIPCs and sterols and suggested a role for very-long-chain fatty acids in the interdigitation between the two PM-composing monolayers. The ins and outs of lipid asymmetry, raft formation, and interdigitation in plant membrane biology are finally discussed.


Assuntos
Membrana Celular/química , Lipídeos de Membrana/química , Nicotiana/química , Esfingolipídeos/química , Técnicas de Cultura de Células/métodos , Membrana Celular/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Glicoesfingolipídeos/química , Lipídeos de Membrana/metabolismo , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Microscopia Confocal , Modelos Moleculares , Fitosteróis/química , Fitosteróis/metabolismo , Folhas de Planta/química , Esfingolipídeos/metabolismo , Nicotiana/citologia , Nicotiana/metabolismo
13.
Bioorg Med Chem Lett ; 25(18): 3825-30, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26248805

RESUMO

A phytochemical investigation of the roots of Ononis angustissima L. (Fabaceae) offered to the bio-guided isolation of new isoflavone 3-(4-(glucopyranosyloxy)-5-hydroxy-2-methoxyphenyl)-7-hydroxy-4H-chromen-4-one 1, together with nine known compounds, ononin 2, formononetin 3, (+)-puerol A-2'-O-ß-D-glucose 4, (-)-puerol B-2'-O-ß-D-glucopyranose ((-)-sophoraside A) 5, (+)-puerol A 6, (-)-trifolirhizin 7, (-)-trifolirhizin-6'-O-malonate 8, (-)-maackiain 9 and (-)-medicarpin 10. Compounds 2-10 were isolated and identified for the first time in Ononis angustissima. We investigated antioxidant capacities of isolated molecules and results showed that compound 6 exhibited the highest antioxidant activity with IC50 values of 19.53 µg/mL, 28.29 µg/mL and 38.53 µg/mL by DPPH radical, ABTS radical cation and reducing power assay, respectively, and an interesting IC50 (20.45 µg/mL) of 1 against DPPH. In addition, the neuroprotective activity of six isolated molecules (4-7, 9, 10) were evaluated. Following the exposure of PC12 cells to Aß25-35, compounds 9 and 10 triggered a significant increase of cell viability and in a dose dependent manner.


Assuntos
Antioxidantes/farmacologia , Ononis/química , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Animais , Antioxidantes/química , Antioxidantes/isolamento & purificação , Benzotiazóis/antagonistas & inibidores , Compostos de Bifenilo/antagonistas & inibidores , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Radicais Livres/antagonistas & inibidores , Estrutura Molecular , Células PC12 , Picratos/antagonistas & inibidores , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Ratos , Relação Estrutura-Atividade , Ácidos Sulfônicos/antagonistas & inibidores , Tunísia
14.
Food Chem ; 169: 49-58, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25236197

RESUMO

The flavonol profiles of grape berry skins were analysed in order to assess phenotypic variation between six grapevines belonging to six different species: Vitis vinifera, Vitiscandicans, Vitischampinii, Vitisamurensis, Vitiscinerea and Vitisdoaniana. High-performance liquid chromatography coupled to mass spectrometry (LC-MS) and NMR spectrometry (LC-NMR) were used to separate and identify the flavonols present in these species. The combination of LC-MS and LC-NMR data resulted in the identification of eighteen flavonols. In particular, the new flavonol diglycoside and pentoside derivatives were determined. In addition, the antioxidant capacities of flavonol grape skin extracts were evaluated by using an oxygen radical absorbance capacity method (ORAC).


Assuntos
Flavonóis/química , Vitis/química , Antioxidantes/química , Cromatografia Líquida de Alta Pressão/métodos , Frutas/química , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/métodos
15.
J Agric Food Chem ; 61(47): 11392-9, 2013 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-24171397

RESUMO

Grapevine canes are rich in resveratrol and its complex derivatives. These compounds have many biological activities and are needed mainly for health purposes. Canes, which are often wasted, can be used to produce these high-value compounds at low cost. We studied sixteen Vitis vinifera L. cultivars among the most widely cultivated ones worldwide. Polyphenols were extracted from their canes and identified by liquid chromatography-nuclear magnetic resonance spectroscopy. We accurately determined the content of E-ε-viniferin, E-resveratrol, E-piceatannol, and vitisin B and, for the first time, that of hopeaphenol and miyabenol C. The canes did not contain these major stilbene compounds in similar proportions, and their abundance and order of abundance varied according to the cultivar. For instance, Pinot noir has very high levels of E-resveratrol and E-ε-viniferin; Gewurztraminer has very high levels of vitisin B, and Carignan and Riesling have very high levels of hopeaphenol. These findings suggest that the right cultivar should be used to obtain the highest yield of a polyphenol of interest.


Assuntos
Polifenóis/análise , Estilbenos/análise , Vitis/química , Benzofuranos/análise , Cromatografia Líquida/métodos , Fenóis/análise , Caules de Planta/química , Resveratrol , Especificidade da Espécie
16.
J Agric Food Chem ; 59(4): 1344-51, 2011 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-21235257

RESUMO

Volatile thiols, compounds that contribute strongly to the varietal aroma, are present in much higher concentrations in sweet wines than in dry wines. This positive effect, due to the presence of Botrytis cinerea on the berries, in fact results from a strong enrichment of cysteine S-conjugate precursors in botrytized berries. In the present study, a convenient model was investigated to reproduce and therefore study this phenomenon. A Vitis vinifera cell culture was used as a simple model, and we focused on S-3-(hexan-1-ol)-l-cysteine (P-3SH), the cysteinylated precursor of 3-sulfanylhexanol. We demonstrated that grapevine cells were able to produce P-3SH and that the presence of B. cinerea considerably increased the precursor level (up to 1000-fold). This positive result was determined to be due to metabolites secreted by the fungus. These molecules were temperature sensitive, unstable over time, and their production was activated in the presence of grapevine cells. Moreover, part of the pathway leading to P-3SH was deciphered: it was directly derived from the cleavage of S-3-(hexan-1-ol)-l-glutathione, which itself was generated after a conjugation of glutathione on (E)-2-hexenal.


Assuntos
Botrytis/fisiologia , Hexanóis/metabolismo , Compostos de Sulfidrila/metabolismo , Vitis/metabolismo , Botrytis/metabolismo , Células Cultivadas , Técnicas de Cocultura , Cisteína/análogos & derivados , Frutas/química , Frutas/metabolismo , Frutas/microbiologia , Glutationa/metabolismo , Odorantes/análise , Caules de Planta/citologia , Caules de Planta/metabolismo , Vitis/citologia , Vinho/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA