Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Microbiology (Reading) ; 165(3): 254-269, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30556806

RESUMO

Microbial sulfate reduction (SR) by sulfate-reducing micro-organisms (SRM) is a primary environmental mechanism of anaerobic organic matter mineralization, and as such influences carbon and sulfur cycling in many natural and engineered environments. In industrial systems, SR results in the generation of hydrogen sulfide, a toxic, corrosive gas with adverse human health effects and significant economic and environmental consequences. Therefore, there has been considerable interest in developing strategies for mitigating hydrogen sulfide production, and several specific inhibitors of SRM have been identified and characterized. Specific inhibitors are compounds that disrupt the metabolism of one group of organisms, with little or no effect on the rest of the community. Putative specific inhibitors of SRM have been used to control sulfidogenesis in industrial and engineered systems. Despite the value of these inhibitors, mechanistic and quantitative studies into the molecular mechanisms of their inhibition have been sparse and unsystematic. The insight garnered by such studies is essential if we are to have a more complete understanding of SR, including the past and current selective pressures acting upon it. Furthermore, the ability to reliably control sulfidogenesis - and potentially assimilatory sulfate pathways - relies on a thorough molecular understanding of inhibition. The scope of this review is to summarize the current state of the field: how we measure and understand inhibition, the targets of specific SR inhibitors and how SRM acclimatize and/or adapt to these stressors.


Assuntos
Adenosina Fosfossulfato/análogos & derivados , Sulfato Adenililtransferase/antagonistas & inibidores , Sulfatos/química , Sulfatos/metabolismo , Adaptação Fisiológica/genética , Ânions/química , Ânions/metabolismo , Transporte Biológico , Sulfeto de Hidrogênio/metabolismo , Oxirredução , Sulfato Adenililtransferase/genética , Sulfato Adenililtransferase/metabolismo , Bactérias Redutoras de Enxofre/genética , Bactérias Redutoras de Enxofre/crescimento & desenvolvimento , Bactérias Redutoras de Enxofre/metabolismo
3.
Environ Sci Technol ; 52(3): 1290-1300, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29320174

RESUMO

Biosouring in crude oil reservoirs by sulfate-reducing microbial communities (SRCs) results in hydrogen sulfide production, precipitation of metal sulfide complexes, increased industrial costs of petroleum production, and exposure issues for personnel. Potential treatment strategies include nitrate or perchlorate injections into reservoirs. Gas chromatography with vacuum ultraviolet ionization and high-resolution time-of-flight mass spectrometry (GC-VUV-HTOF) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) combined with electrospray ionization were applied in this study to identify hydrocarbon degradation patterns and product formations in crude oil samples from biosoured, nitrate-treated, and perchlorate-treated bioreactor column experiments. Crude oil hydrocarbons were selectively transformed based on molecular weight and compound class in the biosouring control environment. Both the nitrate and the perchlorate treatments significantly reduced sulfide production; however, the nitrate treatment enhanced crude oil biotransformation, while the perchlorate treatment inhibited crude oil biotransformation. Nitrogen- and oxygen-containing biodegradation products, particularly with chemical formulas consistent with monocarboxylic and dicarboxylic acids containing 10-60 carbon atoms, were observed in the oil samples from both the souring control and the nitrate-treated columns but were not observed in the oil samples from the perchlorate-treated column. These results demonstrate that hydrocarbon degradation and product formation of crude oil can span hydrocarbon isomers and molecular weights up to C60 and double-bond equivalent classes ranging from straight-chain alkanes to polycyclic aromatic hydrocarbons. Our results also strongly suggest that perchlorate injections may provide a preferred strategy to treat biosouring through inhibition of biotransformation.


Assuntos
Petróleo , Biodegradação Ambiental , Cromatografia Gasosa-Espectrometria de Massas , Hidrocarbonetos , Campos de Petróleo e Gás
4.
Front Microbiol ; 5: 480, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25285094

RESUMO

Microbial sulfate reduction in oil reservoirs (biosouring) is often associated with secondary oil production where seawater containing high sulfate concentrations (~28 mM) is injected into a reservoir to maintain pressure and displace oil. The sulfide generated from biosouring can cause corrosion of infrastructure, health exposure risks, and higher production costs. Isotope monitoring is a promising approach for understanding microbial sulfur cycling in reservoirs, enabling early detection of biosouring, and understanding the impact of souring. Microbial sulfate reduction is known to result in large shifts in the sulfur and oxygen isotope compositions of the residual sulfate, which can be distinguished from other processes that may be occurring in oil reservoirs, such as precipitation of sulfate and sulfide minerals. Key to the success of this method is using the appropriate isotopic fractionation factors for the conditions and processes being monitored. For a set of batch incubation experiments using a mixed microbial culture with crude oil as the electron donor, we measured a sulfur fractionation factor for sulfate reduction of -30‰. We have incorporated this result into a simplified 1D reservoir reactive transport model to highlight how isotopes can help discriminate between biotic and abiotic processes affecting sulfate and sulfide concentrations. Modeling results suggest that monitoring sulfate isotopes can provide an early indication of souring for reservoirs with reactive iron minerals that can remove the produced sulfide, especially when sulfate reduction occurs in the mixing zone between formation waters (FW) containing elevated concentrations of volatile fatty acids (VFAs) and injection water (IW) containing elevated sulfate. In addition, we examine the role of reservoir thermal, geochemical, hydrological, operational and microbiological conditions in determining microbial souring dynamics and hence the anticipated isotopic signatures.

5.
Environ Sci Technol ; 47(15): 8970-7, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23799785

RESUMO

Microbial processes that produce solid-phase minerals could be judiciously applied to modify rock porosity with subsequent alteration and improvement of floodwater sweep in petroleum reservoirs. However, there has been little investigation of the application of this to enhanced oil recovery (EOR). Here, we investigate a unique approach of altering reservoir petrology through the biogenesis of authigenic rock minerals. This process is mediated by anaerobic chemolithotrophic nitrate-dependent Fe(II)-oxidizing microorganisms that precipitate iron minerals from the metabolism of soluble ferrous iron (Fe(2+)) coupled to the reduction of nitrate. This mineral biogenesis can result in pore restriction and reduced pore throat diameter. Advantageously and unlike biomass plugs, these biominerals are not susceptible to pressure or thermal degradation. Furthermore, they do not require continual substrate addition for maintenance. Our studies demonstrate that the biogenesis of insoluble iron minerals in packed-bed columns results in effective hydrology alteration and homogenization of heterogeneous flowpaths upon stimulated microbial Fe(2+) biooxidation. We also demonstrate almost 100% improvement in oil recovery from hydrocarbon-saturated packed-bed columns as a result of this metabolism. These studies represent a novel departure from traditional microbial EOR approaches and indicate the potential for nitrate-dependent Fe(2+) biooxidation to improve volumetric sweep efficiency and enhance both the quality and quantity of oil recovered.


Assuntos
Compostos Ferrosos/metabolismo , Nitratos/metabolismo , Anaerobiose , Biomassa , Oxirredução
6.
Front Microbiol ; 3: 57, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22363331

RESUMO

The anaerobic oxidation of Fe(II) by subsurface microorganisms is an important part of biogeochemical cycling in the environment, but the biochemical mechanisms used to couple iron oxidation to nitrate respiration are not well understood. Based on our own work and the evidence available in the literature, we propose a mechanistic model for anaerobic nitrate-dependent iron oxidation. We suggest that anaerobic iron-oxidizing microorganisms likely exist along a continuum including: (1) bacteria that inadvertently oxidize Fe(II) by abiotic or biotic reactions with enzymes or chemical intermediates in their metabolic pathways (e.g., denitrification) and suffer from toxicity or energetic penalty, (2) Fe(II) tolerant bacteria that gain little or no growth benefit from iron oxidation but can manage the toxic reactions, and (3) bacteria that efficiently accept electrons from Fe(II) to gain a growth advantage while preventing or mitigating the toxic reactions. Predictions of the proposed model are highlighted and experimental approaches are discussed.

7.
J Bacteriol ; 192(5): 1475-6, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20023012

RESUMO

Acidovorax ebreus strain TPSY is the first anaerobic nitrate-dependent Fe(II) oxidizer for which there is a completed genome sequence. Preliminary protein annotation revealed an organism optimized for survival in a complex environmental system. Here, we briefly report the completed and annotated genome sequence of strain TPSY.


Assuntos
Comamonadaceae/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Análise de Sequência de DNA , Anaerobiose , Ferro/metabolismo , Dados de Sequência Molecular , Nitratos/metabolismo , Oxirredução
8.
Appl Microbiol Biotechnol ; 77(4): 927-34, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17943280

RESUMO

A halotolerant, alkaliphilic dissimilatory Fe(III)-reducing bacterium, strain SFB, was isolated from salt flat sediments collected from Soap Lake, WA. 16S ribosomal ribonucleic acid gene sequence analysis identified strain SFB as a novel Bacillus sp. most similar to Bacillus agaradhaerens (96.7% similarity). Strain SFB, a fermentative, facultative anaerobe, fermented various hexoses including glucose and fructose. The fructose fermentation products were lactate, acetate, and formate. Under fructose-fermenting conditions in a medium amended with Fe(III), Fe(II) accumulated concomitant with a stoichiometric decrease in lactate and an increase in acetate and CO(2). Strain SFB was also capable of respiratory Fe(III) reduction with some unidentified component(s) of Luria broth as an electron donor. In addition to Fe(III), strain SFB could also utilize nitrate, fumarate, or O(2) as alternative electron acceptors. Optimum growth was observed at 30 degrees C and pH 9. Although the optimal salinity for growth was 0%, strain SFB could grow in a medium with up to 15% NaCl by mass. These studies describe a novel alkaliphilic, halotolerant organism capable of dissimilatory Fe(III) reduction under extreme conditions and demonstrate that Bacillus species can contribute to the microbial reduction of Fe(III) in environments at elevated pH and salinity, such as soda lakes.


Assuntos
Acetatos/metabolismo , Bacillus/classificação , Bacillus/crescimento & desenvolvimento , Bacillus/fisiologia , Compostos Férricos/metabolismo , Álcalis , Bacillus/genética , DNA Bacteriano/genética , DNA Ribossômico , Água Doce/microbiologia , Sedimentos Geológicos/microbiologia , Concentração de Íons de Hidrogênio , Ferro/metabolismo , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Cloreto de Sódio/metabolismo
9.
Nat Rev Microbiol ; 4(10): 752-64, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16980937

RESUMO

Iron (Fe) has long been a recognized physiological requirement for life, yet for many microorganisms that persist in water, soils and sediments, its role extends well beyond that of a nutritional necessity. Fe(II) can function as an electron source for iron-oxidizing microorganisms under both oxic and anoxic conditions and Fe(III) can function as a terminal electron acceptor under anoxic conditions for iron-reducing microorganisms. Given that iron is the fourth most abundant element in the Earth's crust, iron redox reactions have the potential to support substantial microbial populations in soil and sedimentary environments. As such, biological iron apportionment has been described as one of the most ancient forms of microbial metabolism on Earth, and as a conceivable extraterrestrial metabolism on other iron-mineral-rich planets such as Mars. Furthermore, the metabolic versatility of the microorganisms involved in these reactions has resulted in the development of biotechnological applications to remediate contaminated environments and harvest energy.


Assuntos
Bactérias Anaeróbias/metabolismo , Ferro/metabolismo , Ecossistema , Oxirredução
10.
Appl Environ Microbiol ; 72(1): 686-94, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16391108

RESUMO

Microbial nitrate-dependent Fe(II) oxidation is known to contribute to iron biogeochemical cycling; however, the microorganisms responsible are virtually unknown. In an effort to elucidate this microbial metabolic process in the context of an environmental system, a 14-cm sediment core was collected from a freshwater lake and geochemically characterized concurrently with the enumeration of the nitrate-dependent Fe(II)-oxidizing microbial community and subsequent isolation of a nitrate-dependent Fe(II)-oxidizing microorganism. Throughout the sediment core, ambient concentrations of Fe(II) and nitrate were observed to coexist. Concomitant most probable number enumeration revealed the presence of an abundant nitrate-dependent Fe(II)-oxidizing microbial community (2.4 x 10(3) to 1.5 x 10(4) cells g(-1) wet sediment) from which a novel anaerobic, lithoautotrophic, Fe(II)-oxidizing bacterium, strain 2002, was isolated. Analysis of the complete 16S rRNA gene sequence revealed that strain 2002 was a member of the beta subclass of the proteobacteria with 94.8% similarity to Chromobacterium violaceum, a bacterium not previously recognized for the ability to oxidize nitrate-dependent Fe(II). Under nongrowth conditions, both strain 2002 and C. violaceum incompletely reduced nitrate to nitrite with Fe(II) as the electron donor, while under growth conditions nitrate was reduced to gaseous end products (N2 and N2O). Lithoautotrophic metabolism under nitrate-dependent Fe(II)-oxidizing conditions was verified by the requirement of CO2 for growth as well as the assimilation of 14C-labeled CO2 into biomass. The isolation of strain 2002 represents the first example of an anaerobic, mesophilic, neutrophilic Fe(II)-oxidizing lithoautotroph isolated from freshwater samples. Our studies further demonstrate the abundance of nitrate-dependent Fe(II) oxidizers in freshwater lake sediments and provide further evidence for the potential of microbially mediated Fe(II) oxidation in anoxic environments.


Assuntos
Betaproteobacteria/classificação , Compostos Ferrosos/metabolismo , Água Doce/microbiologia , Sedimentos Geológicos/microbiologia , Ferro/metabolismo , Nitratos/metabolismo , Anaerobiose , Betaproteobacteria/genética , Betaproteobacteria/crescimento & desenvolvimento , Betaproteobacteria/metabolismo , Dióxido de Carbono/metabolismo , Radioisótopos de Carbono/metabolismo , DNA Bacteriano/análise , Sedimentos Geológicos/química , Dados de Sequência Molecular , Oxirredução , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
11.
Appl Environ Microbiol ; 71(12): 8649-55, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16332859

RESUMO

Dechloromonas strain RCB has been shown to be capable of anaerobic degradation of benzene coupled to nitrate reduction. As a continuation of these studies, the metabolic versatility and hydrocarbon biodegradative capability of this organism were investigated. The results of these revealed that in addition to nitrate, strain RCB could alternatively degrade benzene both aerobically and anaerobically with perchlorate or chlorate [(per)chlorate] as a suitable electron acceptor. Furthermore, with nitrate as the electron acceptor, strain RCB could also utilize toluene, ethylbenzene, and all three isomers of xylene (ortho-, meta-, and para-) as electron donors. While toluene and ethylbenzene were completely mineralized to CO2, strain RCB did not completely mineralize para-xylene but rather transformed it to some as-yet-unidentified metabolite. Interestingly, with nitrate as the electron acceptor, strain RCB degraded benzene and toluene concurrently when the hydrocarbons were added as a mixture and almost 92 microM total hydrocarbons were oxidized within 15 days. The results of these studies emphasize the unique metabolic versatility of this organism, highlighting its potential applicability to bioremediative technologies.


Assuntos
Derivados de Benzeno/metabolismo , Benzeno/metabolismo , Betaproteobacteria/metabolismo , Tolueno/metabolismo , Xilenos/metabolismo , Anaerobiose , Biotransformação , Transporte de Elétrons , Cinética
12.
Appl Environ Microbiol ; 71(9): 5427-32, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16151134

RESUMO

Benzene is a highly toxic industrial compound that is essential to the production of various chemicals, drugs, and fuel oils. Due to its toxicity and carcinogenicity, much recent attention has been focused on benzene biodegradation, especially in the absence of molecular oxygen. However, the mechanism by which anaerobic benzene biodegradation occurs is still unclear. This is because until the recent isolation of Dechloromonas strains JJ and RCB no organism that anaerobically degraded benzene was available with which to elucidate the pathway. Although many microorganisms use an initial fumarate addition reaction for hydrocarbon biodegradation, the large activation energy required argues against this mechanism for benzene. Other possible mechanisms include hydroxylation, carboxylation, biomethylation, or reduction of the benzene ring, but previous studies performed with undefined benzene-degrading cultures were unable to clearly distinguish which, if any, of these alternatives is used. Here we demonstrate that anaerobic nitrate-dependent benzene degradation by Dechloromonas strain RCB involves an initial hydroxylation, subsequent carboxylation, and loss of the hydroxyl group to form benzoate. These studies provide the first pure-culture evidence of the pathway of anaerobic benzene degradation. The outcome of these studies also suggests that all anaerobic benzene-degrading microorganisms, regardless of their terminal electron acceptor, may use this pathway.


Assuntos
Benzeno/metabolismo , Betaproteobacteria/crescimento & desenvolvimento , Betaproteobacteria/metabolismo , Anaerobiose , Benzoatos/metabolismo , Biodegradação Ambiental , Meios de Cultura , Descarboxilação , Hidroxilação , Nitratos/metabolismo , Fenol/metabolismo
13.
Appl Environ Microbiol ; 68(6): 3108-13, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12039773

RESUMO

Recent studies in our lab have demonstrated the ubiquity and diversity of microorganisms which couple growth to the reduction of chlorate or perchlorate [(per)chlorate] under anaerobic conditions. We identified two taxonomic groups, the Dechloromonas and the Dechlorosoma groups, which represent the dominant (per)chlorate-reducing bacteria (ClRB) in the environment. As part of these studies we demonstrated that chlorite dismutation is a central step in the reductive pathway of (per)chlorate that is common to all ClRB and which is mediated by the enzyme chlorite dismutase (CD). Initial studies on CD suggested that this enzyme is highly conserved among the ClRB, regardless of their phylogenetic affiliation. As such, this enzyme makes an ideal target for a probe specific for these organisms. Polyclonal antibodies were commercially raised against the purified CD from the ClRB Dechloromonas agitata strain CKB. The obtained antiserum was deproteinated by ammonium sulfate precipitation, and the antigen binding activity was assessed using dot blot analysis of a serial dilution of the antiserum. The titers obtained with purified CD indicated that the antiserum had a high affinity for the CD enzyme, and activity was observed in dilutions as low as 10(-6) of the original antiserum. The antiserum was active against both cell lysates and whole cells of D. agitata, but only if the cells were grown anaerobically with (per)chlorate. No response was obtained with aerobically grown cultures. In addition to D. agitata, dot blot analysis employed with both whole-cell suspensions and cell lysates of several diverse ClRB representing the alpha, beta, and gamma subclasses of Proteobacteria tested positive regardless of phylogenetic affiliation. Interestingly, the dot blot response obtained for each of the ClRB cell lysates was different, suggesting that there may be some differences in the antigenic sites of the CD protein produced in these organisms. In general, no reactions were observed with cells or cell lysates of the organisms closely related to the ClRB which could not grow by (per)chlorate reduction. These studies have resulted in the development of a highly specific and sensitive immunoprobe based on the commonality of the CD enzyme in ClRB which can be used to assess dissimilatory (per)chlorate-reducing populations in environmental samples regardless of their phylogenetic affiliations.


Assuntos
Cloratos/metabolismo , Técnicas Imunoenzimáticas/métodos , Proteobactérias/metabolismo , Escherichia coli/metabolismo , Imunoglobulina G/imunologia , Oxirredutases/imunologia , Oxirredutases/metabolismo , Proteobactérias/enzimologia , Sensibilidade e Especificidade
14.
Res Microbiol ; 153(10): 621-8, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12558180

RESUMO

Benzene is biodegraded in the absence of oxygen under a variety of terminal electron-accepting conditions. However, the mechanism by which anaerobic benzene degradation occurs is unclear. Phenol and benzoate have been consistently detected as intermediates of anaerobic benzene degradation, suggesting that the hydroxylation of benzene to phenol is one of the initial steps in anaerobic benzene degradation. The conversion of phenol to benzoate could then occur by the carboxylation of phenol to form 4-hydroxybenzoate followed by the reductive removal of the hydroxyl group to form benzoate. 13C-Labeling studies suggest that the carboxyl carbon of benzoate is derived from one of the carbons of benzene. Although the fumarate addition reaction is commonly used to activate many hydrocarbons for anaerobic degradation, the large activation energy required to remove hydrogen from the benzene ring argues against such an approach for anaerobic benzene metabolism. The alkylation of benzene to toluene has been detected in several mammalian tissues, and offers an interesting alternate hypothesis for anaerobic benzene degradation in microbial systems. In support of this, anaerobic benzene degradation by Dechloromonas strain RCB, the only known species to degrade benzene in the absence of oxygen, is stimulated by the addition of vitamin B12 and inhibited by the addition of propyl iodide which is consistent with the involvement of a corrinoid enzymatic step. Alkylation of benzene to toluene is also consistent with labeling data that suggests that the carboxyl carbon of benzoate is derived from one of the benzene carbons. However, it is difficult to envision how phenol would be formed if benzene is alkylated to toluene. As such, it is possible that diverse mechanisms for anaerobic benzene degradation may be operative in different anaerobic microorganisms.


Assuntos
Benzeno/metabolismo , Anaerobiose , Biodegradação Ambiental , Metilação , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA