Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Glycobiology ; 34(5)2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38438159

RESUMO

The Cre-lox system is one of the most widely used methods for lineage-specific and inducible genome editing in vivo. However, incomplete penetrance and off-target effects due to transient promoter expression in a stem or pluripotent precursor cell can be problematic and difficult to detect, especially if the target gene is not normally present in the fully differentiated but off-target cells. Yet, the loss of the target gene through the transient expression of Cre may impact the differentiation of those cells by virtue of transient expression in a precursor population. In these situations, off-target effects in an unknown precursor cell can, at best, complicate conclusions drawn from the model, and at worst, invalidate all data generated from that knockout strain. Thus, identifying Cre-driver promoter expression along entire cell lineages is crucial to improve rigor and reproducibility. As an example, transient expression in an early precursor cell has been documented in a variety of Cre strains such as the Tie2-based Cre-driver system that is used as an "endothelial cell-specific" model 1. Yet, Tie2 is now known to be transiently expressed in a stem cell upstream of both hematopoietic and endothelial cell lineages. Here, we use the Tie2 Cre-driver strain to demonstrate that due to its ubiquitous nature, plasma membrane glycans are a useful marker of both penetrance and specificity of a Cre-based knockout.


Assuntos
Células-Tronco Hematopoéticas , Integrases , Camundongos , Animais , Camundongos Transgênicos , Integrases/genética , Integrases/metabolismo , Glicosilação , Reprodutibilidade dos Testes , Células-Tronco Hematopoéticas/metabolismo
2.
Cancer Discov ; 13(9): 2050-2071, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37272843

RESUMO

Most circulating tumor cells (CTC) are detected as single cells, whereas a small proportion of CTCs in multicellular clusters with stemness properties possess 20- to 100-times higher metastatic propensity than the single cells. Here we report that CTC dynamics in both singles and clusters in response to therapies predict overall survival for breast cancer. Chemotherapy-evasive CTC clusters are relatively quiescent with a specific loss of ST6GAL1-catalyzed α2,6-sialylation in glycoproteins. Dynamic hyposialylation in CTCs or deficiency of ST6GAL1 promotes cluster formation for metastatic seeding and enables cellular quiescence to evade paclitaxel treatment in breast cancer. Glycoproteomic analysis reveals newly identified protein substrates of ST6GAL1, such as adhesion or stemness markers PODXL, ICAM1, ECE1, ALCAM1, CD97, and CD44, contributing to CTC clustering (aggregation) and metastatic seeding. As a proof of concept, neutralizing antibodies against one newly identified contributor, PODXL, inhibit CTC cluster formation and lung metastasis associated with paclitaxel treatment for triple-negative breast cancer. SIGNIFICANCE: This study discovers that dynamic loss of terminal sialylation in glycoproteins of CTC clusters contributes to the fate of cellular dormancy, advantageous evasion to chemotherapy, and enhanced metastatic seeding. It identifies PODXL as a glycoprotein substrate of ST6GAL1 and a candidate target to counter chemoevasion-associated metastasis of quiescent tumor cells. This article is featured in Selected Articles from This Issue, p. 1949.


Assuntos
Neoplasias da Mama , Células Neoplásicas Circulantes , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Células Neoplásicas Circulantes/metabolismo , Paclitaxel/uso terapêutico , Glicoproteínas , Biomarcadores Tumorais , Metástase Neoplásica
3.
mBio ; 13(6): e0273322, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36286551

RESUMO

Capsular polysaccharides are common virulence factors of extracellular, but not intracellular bacterial pathogens, due to the antiphagocytic properties of these surface structures. It is therefore paradoxical that Salmonella enterica subspecies enterica serovar Typhi, an intracellular pathogen, synthesizes a virulence-associated (Vi) capsule, which exhibits antiphagocytic properties. Here, we show that the Vi capsular polysaccharide has different functions when S. Typhi interacts with distinct subsets of host phagocytes. The Vi capsular polysaccharide allowed S. Typhi to selectively evade phagocytosis by human neutrophils while promoting human macrophage phagocytosis. A screen of C-type lectin receptors identified human DC-SIGN as the receptor involved in macrophage binding and phagocytosis of capsulated S. Typhi. Consistent with the anti-inflammatory activity of DC-SIGN, purified Vi capsular polysaccharide reduced inflammatory responses in macrophages. These data suggest that binding of the human C-type lectin receptor DC-SIGN by the Vi capsular polysaccharide contributes to the pathogenesis of typhoid fever. IMPORTANCE Salmonella enterica subspecies enterica serovar Typhi is the causative agent of typhoid fever. The recent emergence of S. Typhi strains which are resistant to antibiotic therapy highlights the importance of vaccination in managing typhoid fever. The virulence-associated (Vi) capsular polysaccharide is an effective vaccine against typhoid fever, but the role the capsule plays during pathogenesis remains incompletely understood. Here, we identify the human C-type lectin receptor DC-SIGN as the receptor for the Vi capsular polysaccharide. Binding of capsulated S. Typhi to DC-SIGN resulted in phagocytosis of the pathogen by macrophages and induction of an anti-inflammatory cytokine response. Thus, the interaction of the Vi capsular polysaccharide with human DC-SIGN contributes to the pathogenesis of typhoid fever and should be further investigated in the context of vaccine development.


Assuntos
Salmonella typhi , Febre Tifoide , Humanos , Febre Tifoide/microbiologia , Polissacarídeos Bacterianos/metabolismo , Lectinas Tipo C/metabolismo , Fagocitose , Macrófagos/metabolismo
4.
Glycobiology ; 32(2): 136-147, 2022 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-34939104

RESUMO

Polysaccharide A (PSA) is the immunodominant capsular carbohydrate from the gram negative commensal microbe Bacteroides fragilis that has shown remarkable potency in ameliorating many rodent models of inflammatory disease by eliciting downstream suppressive CD4+ T cells. PSA is composed of a zwitterionic repeating unit that allows it to be processed by antigen presenting cells (APCs) and presented by MHCII in a glycosylation-dependent manner. While previous work has uncovered much about the interactions between MHCII and PSA, as well as the downstream T cell response, little is known about how PSA affects the phenotype of MHCII+ APCs, including macrophages. Here, we utilized an unbiased systems approach consisting of RNAseq transcriptomics, high-throughput flow cytometry, Luminex analysis and targeted validation experiments to characterize the impact of PSA-mediated stimulation of splenic MHCII+ cells. The data revealed that PSA potently elicited the upregulation of an alternatively activated M2 macrophage transcriptomic and cell surface signature. Cell-type-specific validation experiments further demonstrated that PSA-exposed bone marrow-derived macrophages (BMDMs) induced cell surface and intracellular markers associated with M2 macrophages compared with conventional peptide ovalbumin (ova)-exposed BMDMs. In contrast to macrophages, we also found that CD11c+ dendritic cells (DCs) upregulated the pro-T cell activation costimulatory molecule CD86 following PSA stimulation. Consistent with the divergent BMDM and DC changes, PSA-exposed DCs elicited an antigen-experienced T cell phenotype in co-cultures, whereas macrophages did not. These findings collectively demonstrate that the PSA-induced immune response is characterized by both T cell stimulation via presentation by DCs, and a previously unrecognized anti-inflammatory polarization of macrophages.


Assuntos
Células Apresentadoras de Antígenos , Antígeno Prostático Específico , Animais , Anti-Inflamatórios/metabolismo , Células Apresentadoras de Antígenos/metabolismo , Células Dendríticas , Humanos , Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Polissacarídeos/metabolismo , Antígeno Prostático Específico/metabolismo
5.
Annu Rev Immunol ; 39: 511-536, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33577348

RESUMO

The surfaces of all living organisms and most secreted proteins share a common feature: They are glycosylated. As the outermost-facing molecules, glycans participate in nearly all immunological processes, including driving host-pathogen interactions, immunological recognition and activation, and differentiation between self and nonself through a complex array of pathways and mechanisms. These fundamental immunologic roles are further cast into sharp relief in inflammatory, autoimmune, and cancer disease states in which immune regulation goes awry. Here, we review the broad impact of glycans on the immune system and discuss the changes and clinical opportunities associated with the onset of immunologic disease.


Assuntos
Interações Hospedeiro-Patógeno , Polissacarídeos , Animais , Diferenciação Celular , Humanos
6.
Leukemia ; 35(4): 1176-1187, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32814838

RESUMO

The absence of the cell-surface complement inhibitors CD55 and CD59 is considered the mechanism underlying the complement-mediated destruction of affected red blood cells (RBCs) in paroxysmal nocturnal hemoglobinuria (PNH) patients, but Factor H (FH), a fluid-phase complement inhibitor, has also been proposed to be involved. However, the status of FH on the PNH patient RBC surface is unclear and its precise role in PNH pathogenesis remains to be further defined. In this study, we identified significantly lower levels of surface-bound FH on the affected CD59- RBCs than on the unaffected CD59+ RBCs. Although this reduction in surface-bound FH on PNH RBCs was accompanied by decreased surface sialic acid levels, the enzymatic removal of sialic acids from these RBCs did not significantly affect the levels of surface-bound FH. We further observed higher surface levels of FH on the C3b/iC3b/C3dhigh RBCs than on C3b/iC3b/C3dlow RBCs within the affected PNH RBCs of patients treated with eculizumab. Finally, we determined that enhanced surface levels of FH on CD55/CD59-deficient RBCs from mice and PNH patients protected against complement-mediated hemolysis. Taken together, our results suggest that a reduced surface level of FH is another important mechanism underlying the pathogenesis of PNH.


Assuntos
Suscetibilidade a Doenças , Membrana Eritrocítica/metabolismo , Eritrócitos/imunologia , Eritrócitos/metabolismo , Hemoglobinúria Paroxística/etiologia , Hemoglobinúria Paroxística/imunologia , Adulto , Idoso , Animais , Biomarcadores , Fator H do Complemento/metabolismo , Proteínas do Sistema Complemento/imunologia , Modelos Animais de Doenças , Citometria de Fluxo , Hemoglobinúria Paroxística/diagnóstico , Hemólise/imunologia , Humanos , Camundongos , Camundongos Knockout , Microscopia Confocal , Pessoa de Meia-Idade , Adulto Jovem
7.
Front Immunol ; 11: 556813, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193325

RESUMO

Polysaccharide A (PSA), a capsular carbohydrate from the commensal gut bacteria Bacteroides fragilis, has been shown to possess both potent T cell-dependent pro- and anti-inflammatory properties. PSA is able to induce abscess and adhesion formation in sepsis models, but can also inhibit asthma, inflammatory bowel disease (IBD) and experimental autoimmune encephalomyelitis (EAE) through MHCII-dependent activation of CD4+ T cells. Yet, despite decades of study, the ability of PSA to balance both these pro- and anti-inflammatory responses remains poorly understood. Here, we utilized an unbiased systems immunology approach consisting of RNAseq transcriptomics, high-throughput flow cytometry, and Luminex analysis to characterize the full impact of PSA-mediated stimulation of CD4+ T cells. We found that exposure to PSA resulted in the upregulation and secretion of IFNγ, TNFα, IL-6, and CXCL10, consistent with an interferon responsive gene (IRG) signature. Importantly, PSA stimulation also led to expression of immune checkpoint markers Lag3, Tim3, and, especially, PD1, which were also enriched and sustained in the gut associated lymphoid tissue of PSA-exposed mice. Taken together, PSA responding cells display an unusual mixture of pro-inflammatory cytokines and anti-inflammatory surface receptors, consistent with the ability to both cause and inhibit inflammatory disease.


Assuntos
Biomarcadores , Imunomodulação/genética , Interferons/metabolismo , Polissacarídeos Bacterianos/imunologia , Transcriptoma , Animais , Perfilação da Expressão Gênica , Ativação Linfocitária , Tecido Linfoide/imunologia , Tecido Linfoide/metabolismo , Camundongos , Transdução de Sinais , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
8.
Glycoconj J ; 37(3): 395-407, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32222873

RESUMO

Through the catalysis of α2,6-linked sialylation, the enzyme ST6Gal1 is thought to play key roles in immune cell communication and homeostasis. Of particular importance, glycans with terminal α2,6-sialic acids are known to negatively regulate B cell receptor signaling and are associated with an immunosuppressive tumor microenvironment that promotes T cell anergy, suggesting that α2,6-sialic acids are a key immune inhibitory signal. Consistent with this model, mice harboring a hepatocyte-specific ablation of ST6Gal1 (H-cKO) develop a progressive and severe non-alcoholic fatty liver disease characterized by steatohepatitis. Using this H-cKO mouse, we have further discovered that loss of hepatocyte α2,6-sialylation not only increases the inflammatory state of the local tissue microenvironment, but also systemic T cell-dependent immune responses. H-cKO mice responded normally to innate and passively induced inflammation, but showed significantly increased morbidity in T cell-dependent house dust mite-antigen (HDM)-induced asthma and myelin oligodendrocyte glycoprotein (MOG) peptide-induced experimental autoimmune encephalomyelitis (EAE). We further discovered that H-cKO mice have a profound shift toward effector/memory T cells even among unchallenged mice, and that macrophages from both the liver and spleen expressed the inhibitory and α2,6-sialic acid-specific glycan binding molecule CD22. These findings align with previously reported pro-inflammatory changes in liver macrophages, and support a model in which the liver microenvironment sets a systemic immune tone that is regulated by tissue α2,6-sialylation and mediated by liver macrophages and systemic T cells.


Assuntos
Hepatócitos/metabolismo , Imunidade Inata/fisiologia , Sialiltransferases/metabolismo , Linfócitos T/imunologia , Animais , Asma/etiologia , Asma/imunologia , Colite/induzido quimicamente , Colite/imunologia , Modelos Animais de Doenças , Hepatócitos/imunologia , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/toxicidade , Fígado/imunologia , Pulmão/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos Knockout , Peritonite/induzido quimicamente , Peritonite/imunologia , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Sialiltransferases/genética , Tioglicolatos/toxicidade
9.
PLoS One ; 14(5): e0216893, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31120919

RESUMO

CD4+ effector/memory T cells (Tem) represent a leading edge of the adaptive immune system responsible for protecting the body from infection, cancer, and other damaging processes. However, a subset of Tem cells with low expression of CD45Rb (RbLoTem) has been shown to suppress inflammation despite their effector surface phenotype and the lack of FoxP3 expression, the canonical transcription factor found in most regulatory T cells. In this report, we show that RbLoTem cells can suppress inflammation by influencing Treg behavior. Co-culturing activated RbLoTem and Tregs induced high expression of IL-10 in vitro, and conditioned media from RbLoTem cells induced IL-10 expression in FoxP3+ Tregs in vitro and in vivo, indicating that RbLoTem cells communicate with Tregs in a cell-contact independent fashion. Transcriptomic and multi-analyte Luminex data identified both IL-2 and IL-4 as potential mediators of RbLoTem-Treg communication, and antibody-mediated neutralization of either IL-4 or CD124 (IL-4Rα) prevented IL-10 induction in Tregs. Moreover, isolated Tregs cultured with recombinant IL-2 and IL-4 strongly induced IL-10 production. Using house dust mite (HDM)-induced airway inflammation as a model, we confirmed that the in vivo suppressive activity of RbLoTem cells was lost in IL-4-ablated RbLoTem cells. These data support a model in which RbLoTem cells communicate with Tregs using a combination of IL-2 and IL-4 to induce robust expression of IL-10 and suppression of inflammation.


Assuntos
Asma/imunologia , Comunicação Celular/imunologia , Interleucina-10/imunologia , Interleucina-4/imunologia , Antígenos Comuns de Leucócito/imunologia , Modelos Imunológicos , Linfócitos T Reguladores/imunologia , Animais , Asma/genética , Asma/patologia , Comunicação Celular/genética , Modelos Animais de Doenças , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Interleucina-10/genética , Interleucina-2/genética , Interleucina-2/imunologia , Interleucina-4/genética , Antígenos Comuns de Leucócito/genética , Camundongos , Camundongos Knockout , Pyroglyphidae/imunologia , Linfócitos T Reguladores/patologia
11.
Cell Immunol ; 333: 2-8, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29759530

RESUMO

The glycobiology of the immune response is a topic that has garnered increased attention due to a number of key discoveries surrounding IgG function, the specificity of some broadly neutralizing anti-HIV antibodies, cancer immunoregulation by galectin molecules and others. This review is the opening article in a Special Edition of Cellular Immunology focused on glycoimmunology, and has the goal of setting the context for these articles by providing a mini-review of how glycans impact immunity. We also focus on some of the technological and methodological advances in the field of glycobiology that are being deployed to lower the barrier of entry into the glycosciences, and to more fully interrogate the glycome and its function.


Assuntos
Glicômica/métodos , Animais , Anticorpos Neutralizantes/imunologia , Galectinas/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Humanos , Imunoglobulina G/imunologia , Polissacarídeos/imunologia
12.
Glycobiology ; 28(1): 50-58, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29087497

RESUMO

Inhibition of peripheral inflammatory disease by carbohydrate antigens derived from normal gut microbiota has been demonstrated for the GI tract, brain, peritoneum, and most recently the airway. We have demonstrated that polysaccharide A (PSA) from the commensal organism Bacteroides fragilis activates CD4+ T cells upon presentation by the class II major histocompatibility complex, and that these PSA-experienced T cells prevent the development of lung inflammation in murine models. While the PSA-responding T cells themselves are not canonical FoxP3+ regulatory T cells (Tregs), their ability to prevent inflammation is dependent upon the suppressive cytokine IL-10. Using an adoptive T cell transfer approach, we have discovered that PSA-experienced T cells require IL-10 expression by PSA-naïve recipient animals in order to prevent inflammation. A cooperative relationship was found between PSA-activated effector/memory T cells and tissue-resident FoxP3+ Tregs both in vivo and in vitro, and it is this cooperation that enables the suppressive activity of PSA outside of the gut environment where exposure takes place. These findings suggest that carbohydrate antigens from the normal microbiota communicate with peripheral tissues to maintain homeostasis through T cell-to-T cell cooperation.


Assuntos
Fatores de Transcrição Forkhead/imunologia , Interleucina-10/imunologia , Pneumonia/prevenção & controle , Polissacarídeos/farmacologia , Linfócitos T Reguladores/efeitos dos fármacos , Animais , Bacteroides fragilis/isolamento & purificação , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia/imunologia , Pneumonia/microbiologia , Linfócitos T Reguladores/imunologia
13.
Glycobiology ; 26(9): 1007-1013, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27146521

RESUMO

Zwitterionic polysaccharide antigens such as polysaccharide A (PSA) from Bacteroides fragilis have been shown to activate CD4+ T cells upon presentation by class II major histocompatibility complex (MHCII) on professional antigen presenting cells. For T cell recognition and activation, high affinity binding between MHCII and PSA is required, and complex N-glycans on conserved MHCII asparagine residues play a central role in controlling this interaction. By truncating these glycans in a myeloid-specific knockout of Mgat2, created using the LyzM-CRE mouse (M-cKO), we previously reported defects in PSA responses in vivo. Unfortunately, the M-cKO also showed a propensity to develop common variable immunodeficiency with autoimmune hemolytic anemia features. Here, we describe a novel murine model in which Mgat2 was targeted for ablation using the dendritic cell (DC)-specific CD11c-CRE-GFP strain in order to develop a more specific and robust in vivo model of PSA presentation defects (DC-cKO). This study shows that Mgat2 deficient DCs from DC-cKO mice show ablation of PSA presentation and downstream T cell activation in vitro. However, the CD11c promoter was unexpectedly active and triggered Mgat2 deletion within multiple hematopoietic lineages, showed remarkably poor penetrance within native DC populations, and produced almost undetectable levels of green fluorescent protein signal. These findings show that the CD11c promoter is not DC-specific, and extreme care should be taken in the interpretation of data using any mouse created using the CD11c-CRE model.


Assuntos
Apresentação de Antígeno/genética , Antígeno CD11c/genética , N-Acetilglucosaminiltransferases/genética , Polissacarídeos/imunologia , Animais , Apresentação de Antígeno/imunologia , Bacteroides fragilis/química , Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Regulação da Expressão Gênica/imunologia , Camundongos , Camundongos Knockout , N-Acetilglucosaminiltransferases/imunologia , Polissacarídeos/química , Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/imunologia
14.
J Biol Chem ; 290(8): 5007-5014, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25540199

RESUMO

For 3 decades, the view of MHCII-dependent antigen presentation has been completely dominated by peptide antigens despite our 2004 discovery in which MHCII was shown to present processed fragments of zwitterionic capsular polysaccharides to T cells. Published findings further demonstrate that polysaccharide A (PSA) from the capsule of Bacteroides fragilis is a potent activator of CD4(+) T cells and that these T cells have important biological functions, especially in the maintenance of immunological homeostasis. However, little is known about the nature of T cell recognition of the polysaccharide-MHCII complex or the phenotype of the resulting activated cells. Here, we use next-generation sequencing of the αßT cell receptor of CD4(+) T cells from mice stimulated with PSA in comparison with protein antigen simulation and non-immunized controls and found that PSA immunization induced clonal expansion of a small subset of suppressive CD4(+)CD45RB(low) effector/memory T cells. Moreover, the sequences of the complementarity-determining region 3 (CDR3) loop from top clones indicate a lack of specific variable ß and joining region use and average CDR3 loop length. There was also a preference for a zwitterionic motif within the CDR3 loop sequences, aligning well with the known requirement for a similar motif within PSA to enable T cell activation. These data support a model in which PSA, and possibly other T cell-dependent polysaccharide antigens, elicits a clonal and therefore specific CD4(+) T cell response often characterized by pairing dual-charged CDR3 loop sequences with dual-charged PSA.


Assuntos
Cápsulas Bacterianas/química , Bacteroides fragilis/química , Linfócitos T CD4-Positivos/imunologia , Ativação Linfocitária/efeitos dos fármacos , Polissacarídeos Bacterianos/farmacologia , Animais , Linfócitos T CD4-Positivos/citologia , Regiões Determinantes de Complementaridade/imunologia , Memória Imunológica/efeitos dos fármacos , Camundongos , Polissacarídeos Bacterianos/química , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia
15.
Glycobiology ; 25(4): 368-75, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25347992

RESUMO

Over the last four decades, increases in the incidence of immune-mediated diseases in the Western world have been linked to changes in microbial exposure. It is becoming increasingly clear that the normal microbiota in the gut can profoundly alter susceptibility to a wide range of diseases, such as asthma, in which immune homeostasis is disrupted, yet the mechanisms governing this microbial influence remains poorly defined. In this study, we show that gastrointestinal exposure to PSA, a capsular polysaccharide derived from the commensal bacterium Bacteroides fragilis, significantly limits susceptibility to the induction of experimental asthma. We report that direct treatment of mice with PSA generates protection from asthma, and this effect can be given to a naïve recipient by adoptive transfer of CD4(+) T cells from PSA-exposed mice. Remarkably, we found that these PSA-induced T cells are not canonical FoxP3(+) regulatory T cells, but that they potently inhibit both Th1 and Th2 models of asthma in an IL-10-dependent fashion. These findings reveal that bacterial polysaccharides link the microbiota with the peripheral immune system by activating CD4(+)Foxp3(-) T cells upon exposure in the gut, and they facilitate resistance to unnecessary inflammatory responses via the production of IL-10.


Assuntos
Antiasmáticos/farmacologia , Asma/tratamento farmacológico , Polissacarídeos Bacterianos/farmacologia , Células Th1/efeitos dos fármacos , Células Th2/efeitos dos fármacos , Animais , Asma/imunologia , Avaliação Pré-Clínica de Medicamentos , Feminino , Fatores de Transcrição Forkhead/metabolismo , Interleucina-10/fisiologia , Ativação Linfocitária/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Th1/imunologia , Células Th1/metabolismo , Células Th2/imunologia , Células Th2/metabolismo
16.
Nat Immunol ; 15(2): 143-51, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24362892

RESUMO

Here we identified a population of bone marrow neutrophils that constitutively expressed the transcription factor RORγt and produced and responded to interleukin 17A (IL-17A (IL-17)). IL-6, IL-23 and RORγt, but not T cells or natural killer (NK) cells, were required for IL-17 production in neutrophils. IL-6 and IL-23 induced expression of the receptors IL-17RC and dectin-2 on neutrophils, and IL-17RC expression was augmented by activation of dectin-2. Autocrine activity of IL-17A and its receptor induced the production of reactive oxygen species (ROS), and increased fungal killing in vitro and in a model of Aspergillus-induced keratitis. Human neutrophils also expressed RORγt and induced the expression of IL-17A, IL-17RC and dectin-2 following stimulation with IL-6 and IL-23. Our findings identify a population of human and mouse neutrophils with autocrine IL-17 activity that probably contribute to the etiology of microbial and inflammatory diseases.


Assuntos
Aspergilose/imunologia , Aspergillus/imunologia , Interleucina-17/metabolismo , Ceratite/imunologia , Neutrófilos/imunologia , Receptores de Interleucina/metabolismo , Animais , Aspergilose/complicações , Comunicação Autócrina , Células da Medula Óssea/imunologia , Degranulação Celular , Células Cultivadas , Citotoxicidade Imunológica/genética , Modelos Animais de Doenças , Humanos , Interleucina-17/genética , Interleucina-17/imunologia , Interleucina-23/imunologia , Interleucina-6/imunologia , Ceratite/etiologia , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Espécies Reativas de Oxigênio/metabolismo
17.
Glycobiology ; 24(3): 262-71, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24310166

RESUMO

N-linked glycosylation is a central regulatory factor that influences the immune system in varied and profound ways, including leukocyte homing, T cell receptor signaling and others. Moreover, N-glycan branching has been demonstrated to change as a function of infection and inflammation. Our previous findings suggest that complex-type N-glycans on the class II major histocompatibility complex play an important role in antigen selection within antigen presenting cells (APCs) such that highly branched N-glycans promote polysaccharide (glycoantigen, GlyAg) presentation following Toll-like receptor 2 (TLR2)-dependent antigen processing. In order to explore the impact of N-glycan branching on the myeloid-derived APC population without the confounding problems of altering the branching of lymphocytes and non-hematopoietic cells, we created a novel myeloid-specific knockout of the ß-1,2-N-acetylglucosaminyltransferase II (Mgat2) enzyme. Using this novel mouse, we found that the reduction in multi-antennary N-glycans characteristic of Mgat2 ablation had no impact on GlyAg-mediated TLR2 signaling. Likewise, no deficits in antigen uptake or cellular homing to lymph nodes were found. However, we discovered that Mgat2 ablation prevented GlyAg presentation and T cell activation in vitro and in vivo without apparent alterations in protein antigen response or myeloid-mediated protection from infection. These findings demonstrate that GlyAg presentation can be regulated by the N-glycan branching pattern of APCs, thereby establishing an in vivo model where the T cell-dependent activity of GlyAgs can be experimentally distinguished from GlyAg-mediated stimulation of the innate response through TLR2.


Assuntos
Apresentação de Antígeno , Ativação Linfocitária , Células Mieloides/imunologia , N-Acetilglucosaminiltransferases/metabolismo , Linfócitos T/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Deleção de Genes , Camundongos , Camundongos Endogâmicos C57BL , N-Acetilglucosaminiltransferases/genética , Polissacarídeos/metabolismo , Receptor 2 Toll-Like/metabolismo
18.
Front Immunol ; 4: 103, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23653626

RESUMO

The zwitterionic capsular polysaccharide A (PSA) of Bacteroides fragilis is the first carbohydrate antigen described to be presented in major histocompatibility complex (MHC) class II for the induction of CD4(+) T cell responses. However, the identity of the receptor mediating binding and internalization of PSA in antigen presenting cells remains elusive. C-type lectins are glycan-binding receptors known for their capacity to target ligands for antigen presentation to T cells. Here, we investigated whether C-type lectins were involved in the internalization of PSA and identified dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) as the main receptor for PSA on human dendritic cells (DC). The induction of PSA-specific T cell proliferation appeared to be completely dependent on DC-SIGN. These data reveal a crucial role for DC-SIGN in the endocytosis and routing of PSA in human DC for the efficient stimulation of PSA-specific CD4(+) T cells.

19.
J Immunol ; 190(10): 5037-47, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23576679

RESUMO

Low-grade chronic inflammation can persist in aging humans unnoticed for years or even decades, inflicting continuous damage that can culminate later in life as organ dysfunction, physical frailty, and some of the most prominent debilitating and deadly age-associated diseases, including rheumatoid arthritis, diabetes, heart disease, and cancer. Despite the near universal acceptance of these associations, the mechanisms underlying unresolved inflammation remain poorly understood. In this study, we describe a novel inducible method to examine systemic chronic inflammation using susceptible animal models. Induced inflammation results in unresolved innate cellular responses and persistence of the same serum proinflammatory molecules used as diagnostic biomarkers and therapeutic targets for chronic inflammation in humans. Surprisingly, we found long-term persistence of an inflammation-associated neutrophil cell population constitutively producing the proinflammatory IFN-γ cytokine, which until now has only been detected transiently in acute inflammatory responses. Interestingly, these cells appear to confer T cell resistance to the otherwise potent anti-inflammatory function of myeloid-derived suppressor cells, revealing a novel mechanism for the maintenance of chronic inflammatory responses over time. This discovery represents an attractive target to resolve inflammation and prevent the inflammation-induced pathologies that are of critical concern for the well-being of the aging population.


Assuntos
Inflamação/imunologia , Interferon gama/biossíntese , Neutrófilos/imunologia , Neutrófilos/metabolismo , Linfócitos T/imunologia , Envelhecimento , Animais , Bacteroides fragilis/imunologia , Biomarcadores/sangue , Antígeno CD11b/metabolismo , Ciclo Celular , Modelos Animais de Doenças , Interleucina-10/genética , Interleucina-1beta/sangue , Interleucina-6/sangue , Pulmão/imunologia , Pulmão/patologia , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides , NADPH Oxidase 2 , NADPH Oxidases/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Receptores de Quimiocinas/imunologia
20.
J Clin Invest ; 122(7): 2482-98, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22706306

RESUMO

Filamentous fungi are a common cause of blindness and visual impairment worldwide. Using both murine model systems and in vitro human neutrophils, we found that NADPH oxidase produced by neutrophils was essential to control the growth of Aspergillus and Fusarium fungi in the cornea. We demonstrated that neutrophil oxidant production and antifungal activity are dependent on CD18, but not on the ß-glucan receptor dectin-1. We used mutant A. fumigatus strains to show that the reactive oxygen species-sensing transcription factor Yap1, superoxide dismutases, and the Yap1-regulated thioredoxin antioxidant pathway are each required for protection against neutrophil-mediated oxidation of hyphae as well as optimal survival of fungal hyphae in vivo. We also demonstrated that thioredoxin inhibition using the anticancer drug PX-12 increased the sensitivity of fungal hyphae to both H2O2- and neutrophil-mediated killing in vitro. Additionally, topical application of PX-12 significantly enhanced neutrophil-mediated fungal killing in infected mouse corneas. Cumulatively, our data reveal critical host oxidative and fungal anti-oxidative mediators that regulate hyphal survival during infection. Further, these findings also indicate that targeting fungal anti-oxidative defenses via PX-12 may represent an efficacious strategy for treating fungal infections.


Assuntos
Antioxidantes/metabolismo , Aspergilose/microbiologia , Fusariose/microbiologia , Ceratite/microbiologia , Viabilidade Microbiana , Neutrófilos/imunologia , Animais , Antioxidantes/fisiologia , Aspergilose/imunologia , Aspergilose/patologia , Aspergillus flavus/enzimologia , Aspergillus flavus/metabolismo , Aspergillus flavus/fisiologia , Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/metabolismo , Aspergillus fumigatus/fisiologia , Antígenos CD18/metabolismo , Células Cultivadas , Córnea/microbiologia , Córnea/patologia , Ativação Enzimática , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/fisiologia , Fusariose/imunologia , Fusariose/patologia , Fusarium/enzimologia , Fusarium/metabolismo , Fusarium/fisiologia , Interações Hospedeiro-Patógeno , Humanos , Ceratite/imunologia , Ceratite/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Infiltração de Neutrófilos , Neutrófilos/enzimologia , Neutrófilos/microbiologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo , Peroxidase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase/fisiologia , Tiorredoxinas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA