Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4622, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528097

RESUMO

Caspase recruitment-domain containing protein 9 (CARD9) is a key signaling pathway in macrophages but its role in atherosclerosis is still poorly understood. Global deletion of Card9 in Apoe-/- mice as well as hematopoietic deletion in Ldlr-/- mice increases atherosclerosis. The acceleration of atherosclerosis is also observed in Apoe-/-Rag2-/-Card9-/- mice, ruling out a role for the adaptive immune system in the vascular phenotype of Card9 deficient mice. Card9 deficiency alters macrophage phenotype through CD36 overexpression with increased IL-1ß production, increased lipid uptake, higher cell death susceptibility and defective autophagy. Rapamycin or metformin, two autophagy inducers, abolish intracellular lipid overload, restore macrophage survival and autophagy flux in vitro and finally abolish the pro-atherogenic effects of Card9 deficiency in vivo. Transcriptomic analysis of human CARD9-deficient monocytes confirms the pathogenic signature identified in murine models. In summary, CARD9 is a key protective pathway in atherosclerosis, modulating macrophage CD36-dependent inflammatory responses, lipid uptake and autophagy.


Assuntos
Aterosclerose , Humanos , Animais , Camundongos , Aterosclerose/metabolismo , Autofagia/genética , Apolipoproteínas E/genética , Lipídeos , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Camundongos Knockout , Camundongos Endogâmicos C57BL
2.
Immunity ; 56(8): 1809-1824.e10, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37499656

RESUMO

Complement factor H (CFH) negatively regulates consumption of complement component 3 (C3), thereby restricting complement activation. Genetic variants in CFH predispose to chronic inflammatory disease. Here, we examined the impact of CFH on atherosclerosis development. In a mouse model of atherosclerosis, CFH deficiency limited plaque necrosis in a C3-dependent manner. Deletion of CFH in monocyte-derived inflammatory macrophages propagated uncontrolled cell-autonomous C3 consumption without downstream C5 activation and heightened efferocytotic capacity. Among leukocytes, Cfh expression was restricted to monocytes and macrophages, increased during inflammation, and coincided with the accumulation of intracellular C3. Macrophage-derived CFH was sufficient to dampen resolution of inflammation, and hematopoietic deletion of CFH in atherosclerosis-prone mice promoted lesional efferocytosis and reduced plaque size. Furthermore, we identified monocyte-derived inflammatory macrophages expressing C3 and CFH in human atherosclerotic plaques. Our findings reveal a regulatory axis wherein CFH controls intracellular C3 levels of macrophages in a cell-autonomous manner, evidencing the importance of on-site complement regulation in the pathogenesis of inflammatory diseases.


Assuntos
Aterosclerose , Complemento C3 , Animais , Humanos , Camundongos , Aterosclerose/metabolismo , Complemento C3/genética , Complemento C3/metabolismo , Fator H do Complemento/genética , Fator H do Complemento/metabolismo , Inflamação , Macrófagos/metabolismo
3.
Cardiovasc Res ; 119(3): 772-785, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35950218

RESUMO

AIMS: Macrophages have a critical and dual role in post-ischaemic cardiac repair, as they can foster both tissue healing and damage. Multiple subsets of tissue resident and monocyte-derived macrophages coexist in the infarcted heart, but their precise identity, temporal dynamics, and the mechanisms regulating their acquisition of discrete states are not fully understood. To address this, we used multi-modal single-cell immune profiling, combined with targeted cell depletion and macrophage fate mapping, to precisely map monocyte/macrophage transitions after experimental myocardial infarction. METHODS AND RESULTS: We performed single-cell transcriptomic and cell-surface marker profiling of circulating and cardiac immune cells in mice challenged with acute myocardial infarction, and integrated single-cell transcriptomes obtained before and at 1, 3, 5, 7, and 11 days after infarction. Using complementary strategies of CCR2+ monocyte depletion and fate mapping of tissue resident macrophages, we determined the origin of cardiac macrophage populations. The macrophage landscape of the infarcted heart was dominated by monocyte-derived cells comprising two pro-inflammatory populations defined as Isg15hi and MHCII+Il1b+, alongside non-inflammatory Trem2hi cells. Trem2hi macrophages were observed in the ischaemic area, but not in the remote viable myocardium, and comprised two subpopulations sequentially populating the heart defined as Trem2hiSpp1hi monocyte-to-macrophage intermediates, and fully differentiated Trem2hiGdf15hi macrophages. Cardiac Trem2hi macrophages showed similarities to 'lipid-associated macrophages' found in mouse models of metabolic diseases and were observed in the human heart, indicating conserved features of this macrophage state across diseases and species. Ischaemic injury induced a shift of circulating Ly6Chi monocytes towards a Chil3hi state with granulocyte-like features, but the acquisition of the Trem2hi macrophage signature occurred in the ischaemic tissue. In vitro, macrophages acquired features of the Trem2hi signature following apoptotic-cell efferocytosis. CONCLUSION: Our work provides a comprehensive map of monocyte/macrophage transitions in the ischaemic heart, constituting a valuable resource for further investigating how these cells may be harnessed and modulated to promote post-ischaemic heart repair.


Assuntos
Macrófagos , Infarto do Miocárdio , Camundongos , Humanos , Animais , Macrófagos/metabolismo , Infarto do Miocárdio/metabolismo , Monócitos/metabolismo , Miocárdio/metabolismo , Fagocitose , Camundongos Endogâmicos C57BL
4.
Cardiovasc Res ; 119(8): 1676-1689, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-36190844

RESUMO

AIMS: Accumulation of mononuclear phagocytes [monocytes, macrophages, and dendritic cells (DCs)] in the vessel wall is a hallmark of atherosclerosis. Using integrated single-cell analysis of mouse and human atherosclerosis, we here aimed to refine the nomenclature of mononuclear phagocytes in atherosclerotic vessels and to compare their transcriptomic profiles in mouse and human disease. METHODS AND RESULTS: We integrated 12 single-cell RNA-sequencing (scRNA-seq) datasets of immune cells isolated from healthy or atherosclerotic mouse aortas, and data from 11 patients (n = 4 coronary vessels, n = 7 carotid endarterectomy specimens) from two studies. Integration of mouse data identified subpopulations with discrete transcriptomic signatures within previously described populations of aortic resident (Lyve1), inflammatory (Il1b), as well as foamy (Trem2hi) macrophages. We identified unique transcriptomic features distinguishing aortic intimal resident macrophages from atherosclerosis-associated Trem2hi macrophages. Also, populations of Xcr1+ Type 1 classical DCs (cDC1), Cd209a+ cDC2, and mature DCs (Ccr7, Fscn1) with a 'mreg-DC' signature were detected. In humans, we uncovered macrophage and DC populations with gene expression patterns similar to those observed in mice. In particular, core transcripts of the foamy/Trem2hi signature (TREM2, SPP1, GPNMB, CD9) mapped to a specific population of macrophages in human lesions. Comparison of mouse and human data and direct cross-species data integration suggested transcriptionally similar macrophage and DC populations in mice and humans. CONCLUSIONS: We refined the nomenclature of mononuclear phagocytes in mouse atherosclerotic vessels, and show conserved transcriptomic features of macrophages and DCs in atherosclerosis in mice and humans, emphasizing the relevance of mouse models to study mononuclear phagocytes in atherosclerosis.


Assuntos
Aterosclerose , Macrófagos , Humanos , Macrófagos/metabolismo , Monócitos/metabolismo , Aterosclerose/patologia , Células Dendríticas , Análise de Célula Única , Glicoproteínas de Membrana/metabolismo
5.
Nat Commun ; 13(1): 6592, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329047

RESUMO

JAK2V617F mutation is associated with an increased risk for athero-thrombotic cardiovascular disease, but its role in aortic disease development and complications remains unknown. In a cohort of patients with myeloproliferative neoplasm, JAK2V617F mutation was identified as an independent risk factor for dilation of both the ascending and descending thoracic aorta. Using single-cell RNA-seq, complementary genetically-modified mouse models, as well as pharmacological approaches, we found that JAK2V617F mutation was associated with a pathogenic pro-inflammatory phenotype of perivascular tissue-resident macrophages, which promoted deleterious aortic wall remodeling at early stages, and dissecting aneurysm through the recruitment of circulating monocytes at later stages. Finally, genetic manipulation of tissue-resident macrophages, or treatment with a Jak2 inhibitor, ruxolitinib, mitigated aortic wall inflammation and reduced aortic dilation and rupture. Overall, JAK2V617F mutation drives vascular resident macrophages toward a pathogenic phenotype and promotes dissecting aortic aneurysm.


Assuntos
Aneurisma Aórtico , Dissecção Aórtica , Camundongos , Animais , Dissecção Aórtica/patologia , Fenótipo , Mutação , Macrófagos/patologia , Aneurisma Aórtico/genética , Aneurisma Aórtico/complicações
6.
Cardiovasc Res ; 118(14): 2932-2945, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34897380

RESUMO

AIMS: Atherosclerosis is a chronic inflammatory disease of the vessel wall controlled by local and systemic immune responses. The role of interleukin-23 receptor (IL-23R), expressed in adaptive immune cells (mainly T-helper 17 cells) and γδ T cells, in atherosclerosis is only incompletely understood. Here, we investigated the vascular cell types expressing IL-23R and addressed the function of IL-23R and γδ T cells in atherosclerosis. METHODS AND RESULTS: IL-23R+ cells were frequently found in the aortic root in contrast to the aorta in low-density lipoprotein receptor deficient IL-23R reporter mice (Ldlr-/-Il23rgfp/+), and mostly identified as γδ T cells that express IL-17 and GM-CSF. scRNA-seq confirmed γδ T cells as the main cell type expressing Il23r and Il17a in the aorta. Ldlr-/-Il23rgfp/gfp mice deficient in IL-23R showed a loss of IL-23R+ cells in the vasculature, and had reduced atherosclerotic lesion formation in the aortic root compared to Ldlr-/- controls after 6 weeks of high-fat diet feeding. In contrast, Ldlr-/-Tcrδ-/- mice lacking all γδ T cells displayed unaltered early atherosclerotic lesion formation compared to Ldlr-/- mice. In both HFD-fed Ldlr-/-Il23rgfp/gfp and Ldlr-/-Tcrδ-/- mice a reduction in the plaque necrotic core area was noted as well as an expansion of splenic regulatory T cells. In vitro, exposure of bone marrow-derived macrophages to both IL-17A and GM-CSF induced cell necrosis, and necroptotic RIP3K and MLKL expression, as well as inflammatory mediators. CONCLUSIONS: IL-23R+ γδ T cells are predominantly found in the aortic root rather than the aorta and promote early atherosclerotic lesion formation, plaque necrosis, and inflammation at this site. Targeting IL-23R may thus be explored as a therapeutic approach to mitigate atherosclerotic lesion development.


Assuntos
Aterosclerose , Placa Aterosclerótica , Receptores de Interleucina , Animais , Camundongos , Aterosclerose/metabolismo , Modelos Animais de Doenças , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Necrose/metabolismo , Placa Aterosclerótica/metabolismo , Receptores de LDL , Células Th17 , Receptores de Interleucina/genética
7.
Cell ; 184(26): 6243-6261.e27, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34914922

RESUMO

COVID-19-induced "acute respiratory distress syndrome" (ARDS) is associated with prolonged respiratory failure and high mortality, but the mechanistic basis of lung injury remains incompletely understood. Here, we analyze pulmonary immune responses and lung pathology in two cohorts of patients with COVID-19 ARDS using functional single-cell genomics, immunohistology, and electron microscopy. We describe an accumulation of CD163-expressing monocyte-derived macrophages that acquired a profibrotic transcriptional phenotype during COVID-19 ARDS. Gene set enrichment and computational data integration revealed a significant similarity between COVID-19-associated macrophages and profibrotic macrophage populations identified in idiopathic pulmonary fibrosis. COVID-19 ARDS was associated with clinical, radiographic, histopathological, and ultrastructural hallmarks of pulmonary fibrosis. Exposure of human monocytes to SARS-CoV-2, but not influenza A virus or viral RNA analogs, was sufficient to induce a similar profibrotic phenotype in vitro. In conclusion, we demonstrate that SARS-CoV-2 triggers profibrotic macrophage responses and pronounced fibroproliferative ARDS.


Assuntos
COVID-19/patologia , COVID-19/virologia , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/virologia , Macrófagos/patologia , Macrófagos/virologia , SARS-CoV-2/fisiologia , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , COVID-19/diagnóstico por imagem , Comunicação Celular , Estudos de Coortes , Fibroblastos/patologia , Regulação da Expressão Gênica , Humanos , Fibrose Pulmonar Idiopática/diagnóstico por imagem , Fibrose Pulmonar Idiopática/genética , Células-Tronco Mesenquimais/patologia , Fenótipo , Proteoma/metabolismo , Receptores de Superfície Celular/metabolismo , Síndrome do Desconforto Respiratório/diagnóstico por imagem , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/virologia , Tomografia Computadorizada por Raios X , Transcrição Gênica
8.
Cardiovasc Res ; 117(13): 2664-2676, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34048536

RESUMO

AIMS: Recent studies have revealed that B cells and antibodies can influence inflammation and remodelling following a myocardial infarction (MI) and culminating in heart failure-but the mechanisms underlying these observations remain elusive. We therefore conducted in mice a deep phenotyping of the post-MI B-cell responses in infarcted hearts and mediastinal lymph nodes, which drain the myocardium. Thereby, we sought to dissect the mechanisms controlling B-cell mobilization and activity in situ. METHODS AND RESULTS: Histological, flow cytometry, and single-cell RNA-sequencing (scRNA-seq) analyses revealed a rapid accumulation of diverse B-cell subsets in infarcted murine hearts, paralleled by mild clonal expansion of germinal centre B cells in the mediastinal lymph nodes. The repertoire of cardiac B cells was largely polyclonal and showed no sign of antigen-driven clonal expansion. Instead, it included a distinct subset exclusively found in the heart, herein termed 'heart-associated B cells' (hB) that expressed high levels of Cd69 as an activation marker, C-C-chemokine receptor type 7 (Ccr7), CXC-chemokine receptor type 5 (Cxcr5), and transforming growth factor beta 1 (Tgfb1). This distinct signature was not shared with any other cell population in the healing myocardium. Moreover, we detected a myocardial gradient of CXC-motif chemokine ligand 13 (CXCL13, the ligand of CXCR5) on Days 1 and 5 post-MI. When compared with wild-type controls, mice treated with a neutralizing CXCL13-specific antibody as well as CXCR5-deficient mice showed reduced post-MI infiltration of B cells and reduced local Tgfb1 expression but no differences in contractile function nor myocardial morphology were observed between groups. CONCLUSION: Our study reveals that polyclonal B cells showing no sign of antigen-specificity readily infiltrate the heart after MI via the CXCL13-CXCR5 axis and contribute to local TGF-ß1 production. The local B-cell responses are paralleled by mild antigen-driven germinal centre reactions in the mediastinal lymph nodes that might ultimately lead to the production of specific antibodies.


Assuntos
Subpopulações de Linfócitos B/metabolismo , Proliferação de Células , Quimiocina CXCL13/metabolismo , Quimiotaxia de Leucócito , Linfonodos/metabolismo , Ativação Linfocitária , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Receptores CXCR5/metabolismo , Animais , Subpopulações de Linfócitos B/imunologia , Quimiocina CXCL13/genética , Quimiocinas/genética , Quimiocinas/metabolismo , Modelos Animais de Doenças , Imunoglobulinas/metabolismo , Linfonodos/imunologia , Masculino , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/genética , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/patologia , Miocárdio/imunologia , Miocárdio/patologia , Fenótipo , RNA-Seq , Receptores CXCR5/genética , Transdução de Sinais , Análise de Célula Única , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
9.
Circ Res ; 127(9): e232-e249, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32811295

RESUMO

RATIONALE: After myocardial infarction, neutrophils rapidly and massively infiltrate the heart, where they promote both tissue healing and damage. OBJECTIVE: To characterize the dynamics of circulating and cardiac neutrophil diversity after infarction. METHODS AND RESULTS: We employed single-cell transcriptomics combined with cell surface epitope detection by sequencing to investigate temporal neutrophil diversity in the blood and heart after murine myocardial infarction. At day 1, 3, and 5 after infarction, cardiac Ly6G+ (lymphocyte antigen 6G) neutrophils could be delineated into 6 distinct clusters with specific time-dependent patterning and proportions. At day 1, neutrophils were characterized by a gene expression profile proximal to bone marrow neutrophils (Cd177, Lcn2, Fpr1), and putative activity of transcriptional regulators involved in hypoxic response (Hif1a) and emergency granulopoiesis (Cebpb). At 3 and 5 days, 2 major subsets of Siglecfhi (enriched for eg, Icam1 and Tnf) and Siglecflow (Slpi, Ifitm1) neutrophils were found. Cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) analysis in blood and heart revealed that while circulating neutrophils undergo a process of aging characterized by loss of surface CD62L and upregulation of Cxcr4, heart infiltrating neutrophils acquired a unique SiglecFhi signature. SiglecFhi neutrophils were absent from the bone marrow and spleen, indicating local acquisition of the SiglecFhi signature. Reducing the influx of blood neutrophils by anti-Ly6G treatment increased proportions of cardiac SiglecFhi neutrophils, suggesting accumulation of locally aged neutrophils. Computational analysis of ligand/receptor interactions revealed putative pathways mediating neutrophil to macrophage communication in the myocardium. Finally, SiglecFhi neutrophils were also found in atherosclerotic vessels, revealing that they arise across distinct contexts of cardiovascular inflammation. CONCLUSIONS: Altogether, our data provide a time-resolved census of neutrophil diversity and gene expression dynamics in the mouse blood and ischemic heart at the single-cell level, and reveal a process of local tissue specification of neutrophils in the ischemic heart characterized by the acquisition of a SiglecFhi signature.


Assuntos
Infarto do Miocárdio , Infiltração de Neutrófilos , Neutrófilos/citologia , Neutrófilos/fisiologia , Animais , Antígenos Ly/imunologia , Doenças da Aorta/patologia , Aterosclerose/patologia , Autoanticorpos/farmacologia , Células da Medula Óssea , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Comunicação Celular , Senescência Celular , Mapeamento de Epitopos/métodos , Adesões Focais , Proteínas Ligadas por GPI/metabolismo , Perfilação da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Isoantígenos/metabolismo , Antígenos Comuns de Leucócito , Lipocalina-2/metabolismo , Macrófagos/fisiologia , Camundongos , Infarto do Miocárdio/sangue , Neutrófilos/metabolismo , Especificidade de Órgãos , Receptores de Superfície Celular/metabolismo , Receptores de Formil Peptídeo/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Baço/citologia , Fatores de Tempo
10.
Circ Res ; 122(12): 1661-1674, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29545365

RESUMO

RATIONALE: It is assumed that atherosclerotic arteries contain several macrophage subsets endowed with specific functions. The precise identity of these subsets is poorly characterized as they have been defined by the expression of a restricted number of markers. OBJECTIVE: We have applied single-cell RNA sequencing as an unbiased profiling strategy to interrogate and classify aortic macrophage heterogeneity at the single-cell level in atherosclerosis. METHOD AND RESULTS: We performed single-cell RNA sequencing of total aortic CD45+ cells extracted from the nondiseased (chow fed) and atherosclerotic (11 weeks of high-fat diet) aorta of low-density lipoprotein receptor-deficient (Ldlr-/-) mice. Unsupervised clustering singled out 13 distinct aortic cell clusters. Among the myeloid cell populations, resident-like macrophages with a gene expression profile similar to aortic resident macrophages were found in healthy and diseased aortas, whereas monocytes, monocyte-derived dendritic cells, and 2 populations of macrophages were almost exclusively detectable in atherosclerotic aortas, comprising inflammatory macrophages showing enrichment in Il1b and previously undescribed TREM2hi (triggered receptor expressed on myeloid cells 2) macrophages showing enrichment in Trem2. Differential gene expression and gene ontology enrichment analyses revealed specific gene expression patterns distinguishing these 3 macrophage subsets and monocyte-derived dendritic cells and uncovered putative functions of each cell type. Notably, TREM2hi macrophages seemed to be endowed with specialized functions in lipid metabolism and catabolism and presented a gene expression signature reminiscent of osteoclasts, suggesting a role in lesion calcification. TREM2 expression was moreover detected in human lesional macrophages. Importantly, these macrophage populations were present also in advanced atherosclerosis and in Apoe-/- aortas, indicating relevance of our findings in different stages of atherosclerosis and mouse models. CONCLUSIONS: These data unprecedentedly uncovered the transcriptional landscape and phenotypic heterogeneity of aortic macrophages and monocyte-derived dendritic cells in atherosclerotic and identified previously unrecognized macrophage populations and their gene expression signature, suggesting specialized functions. Our findings will open up novel opportunities to explore distinct myeloid cell populations and their functions in atherosclerosis.


Assuntos
Doenças da Aorta/patologia , Aterosclerose/patologia , Macrófagos/classificação , Monócitos/classificação , Análise de Sequência de RNA/métodos , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Linfócitos B/classificação , Biomarcadores/análise , Células Dendríticas/classificação , Células Dendríticas/patologia , Perfilação da Expressão Gênica/métodos , Humanos , Leucócitos/classificação , Leucócitos/patologia , Macrófagos/patologia , Masculino , Camundongos , Monócitos/patologia , Fenótipo , Receptores de LDL/deficiência , Receptores de LDL/genética , Análise de Célula Única , Linfócitos T/classificação
11.
Circ Res ; 122(12): 1675-1688, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29545366

RESUMO

RATIONALE: Atherosclerosis is a chronic inflammatory disease that is driven by the interplay of pro- and anti-inflammatory leukocytes in the aorta. Yet, the phenotypic and transcriptional diversity of aortic leukocytes is poorly understood. OBJECTIVE: We characterized leukocytes from healthy and atherosclerotic mouse aortas in-depth by single-cell RNA-sequencing and mass cytometry (cytometry by time of flight) to define an atlas of the immune cell landscape in atherosclerosis. METHODS AND RESULTS: Using single-cell RNA-sequencing of aortic leukocytes from chow diet- and Western diet-fed Apoe-/- and Ldlr-/- mice, we detected 11 principal leukocyte clusters with distinct phenotypic and spatial characteristics while the cellular repertoire in healthy aortas was less diverse. Gene set enrichment analysis on the single-cell level established that multiple pathways, such as for lipid metabolism, proliferation, and cytokine secretion, were confined to particular leukocyte clusters. Leukocyte populations were differentially regulated in atherosclerotic Apoe-/- and Ldlr-/- mice. We confirmed the phenotypic diversity of these clusters with a novel mass cytometry 35-marker panel with metal-labeled antibodies and conventional flow cytometry. Cell populations retrieved by these protein-based approaches were highly correlated to transcriptionally defined clusters. In an integrated screening strategy of single-cell RNA-sequencing, mass cytometry, and fluorescence-activated cell sorting, we detected 3 principal B-cell subsets with alterations in surface markers, functional pathways, and in vitro cytokine secretion. Leukocyte cluster gene signatures revealed leukocyte frequencies in 126 human plaques by a genetic deconvolution strategy. This approach revealed that human carotid plaques and microdissected mouse plaques were mostly populated by macrophages, T-cells, and monocytes. In addition, the frequency of genetically defined leukocyte populations in carotid plaques predicted cardiovascular events in patients. CONCLUSIONS: The definition of leukocyte diversity by high-dimensional analyses enables a fine-grained analysis of aortic leukocyte subsets, reveals new immunologic mechanisms and cell-type-specific pathways, and establishes a functional relevance for lesional leukocytes in human atherosclerosis.


Assuntos
Doenças da Aorta/patologia , Aterosclerose/patologia , Leucócitos/patologia , Análise de Sequência de RNA/métodos , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Linfócitos B/patologia , Citometria de Fluxo/métodos , Humanos , Leucócitos/metabolismo , Macrófagos/patologia , Ilustração Médica , Camundongos , Monócitos/patologia , Fenótipo , Receptores de LDL/deficiência , Receptores de LDL/genética , Análise de Célula Única/métodos , Linfócitos T/patologia , Transcriptoma
12.
Pflugers Arch ; 469(3-4): 485-499, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28168325

RESUMO

Atherosclerosis is characterized by lipid accumulation and chronic inflammation of the arterial wall, and its main complications-myocardial infarction and ischemic stroke-together constitute the first cause of death worldwide. Accumulation of lipid-laden macrophage foam cells in the intima of inflamed arteries has long been recognized as a hallmark of atherosclerosis. However, in recent years, an unexpected complexity in the mechanisms of macrophage accumulation in lesions, in the protective and pathogenic functions performed by macrophages and how they are regulated has been uncovered. Here, we provide an overview of the latest developments regarding the various mechanisms of macrophage accumulation in lesion, the major functional features of lesion macrophages, and how the plaque microenvironment may affect macrophage phenotype. Finally, we discuss how best to apprehend the heterogeneous ontogeny and functionality of atherosclerotic plaque macrophages and argue that moving away from a rigid nomenclature of arbitrarily defined macrophage subsets would be beneficial for research in the field.


Assuntos
Aterosclerose/patologia , Inflamação/patologia , Macrófagos/patologia , Animais , Microambiente Celular/fisiologia , Humanos , Placa Aterosclerótica/patologia
13.
Thromb Haemost ; 117(1): 176-187, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-27786338

RESUMO

Atherosclerosis is considered a chronic inflammatory disease of the vessel wall. Coagulation pathways and immune responses contribute to disease development. The role of coagulation factor XII (FXII) in vascular inflammation, however, remains controversial. We here investigated the function of FXII in atherosclerosis using apolipoprotein E and FXII-deficient (F12-/-Apoe-/-) mice. Compared to F12+/+Apoe-/- controls, atherosclerotic lesion formation was reduced in F12-/-Apoe-/- mice. This was associated with a decrease in serum interleukin (IL)-1ß and IL-12 levels and reduced expression of pro-inflammatory cytokines in the aorta in atherosclerotic F12-/-Apoe-/- mice, as well as diminished Th1-cell differentiation in the aorta, blood, and lymphoid organs. No changes in circulating bradykinin, thrombin-antithrombin-complexes or plasminogen were observed. Mechanistically, activated FXII (FXIIa) was revealed to directly induce bone marrow-derived macrophages to secrete pro-inflammatory cytokines, including tumour necrosis factor-α, IL-1ß, IL-12, and IL-6. Exposure of bone marrow-derived antigen presenting cells to FXIIa similarly induced pro-inflammatory cytokines, and an enhanced capacity to trigger antigen-specific interferon γ-production in CD4+ T cells. Notably, bone-marrow derived macrophages were capable of directly activating FXII. Moreover, the induction of cytokine expression by FXIIa in macrophages occurred independently of FXII protease enzymatic activity and was decreased upon phospholipase C treatment, suggesting urokinase-type plasminogen activator receptor (uPAR) to confer FXIIa-induced cell signalling. These data reveal FXII to play an important role in atherosclerotic lesion formation by functioning as a strong inducer of pro-inflammatory cytokines in antigen-presenting cells. Targeting of FXII may thus be a promising approach for treating cardiovascular disease.


Assuntos
Células Apresentadoras de Antígenos/metabolismo , Doenças da Aorta/metabolismo , Aterosclerose/metabolismo , Citocinas/metabolismo , Deficiência do Fator XII/metabolismo , Fator XII/metabolismo , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Animais , Células Apresentadoras de Antígenos/imunologia , Doenças da Aorta/sangue , Doenças da Aorta/genética , Doenças da Aorta/imunologia , Aterosclerose/sangue , Aterosclerose/genética , Aterosclerose/imunologia , Proliferação de Células , Citocinas/imunologia , Modelos Animais de Doenças , Fator XII/genética , Deficiência do Fator XII/sangue , Deficiência do Fator XII/genética , Deficiência do Fator XII/imunologia , Fator XIIa/genética , Fator XIIa/metabolismo , Predisposição Genética para Doença , Mediadores da Inflamação/imunologia , Ativação Linfocitária , Macrófagos/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Fenótipo , Placa Aterosclerótica , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Células Th1/imunologia , Células Th1/metabolismo , Fatores de Tempo
14.
Circulation ; 133(9): 826-39, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26819373

RESUMO

BACKGROUND: In infarcted heart, improper clearance of dying cells by activated neighboring phagocytes may precipitate the transition to heart failure. We analyzed the coordinated role of 2 major mediators of efferocytosis, the myeloid-epithelial-reproductive protein tyrosine kinase (Mertk) and the milk fat globule epidermal growth factor (Mfge8), in directing cardiac remodeling by skewing the inflammatory response after myocardial infarction. METHODS AND RESULTS: We generated double-deficient mice for Mertk and Mfge8 (Mertk(-/-)/Mfge8(-/-)) and challenged them with acute coronary ligature. Compared with wild-type, Mertk-deficient (Mertk(-/-)), or Mfge8-deficient (Mfge8(-/-)) animals, Mertk(-/-)/Mfge8(-/-) mice displayed greater alteration in cardiac function and remodeling. Mertk and Mfge8 were expressed mainly by cardiac Ly6C(High and Low) monocytes and macrophages. In parallel, Mertk(-/-)/Mfge8(-/-) bone marrow chimeras manifested increased accumulation of apoptotic cells, enhanced fibrotic area, and larger infarct size, as well as reduced angiogenesis. We found that the abrogation of efferocytosis affected neither the ability of circulating monocytes to infiltrate cardiac tissue nor the number of resident Ly6C(High) and Ly6C(How) monocytes/macrophages populating the infarcted milieu. In contrast, combined Mertk and Mfge8 deficiency in Ly6C(High)/Ly6C(Low) monocytes/macrophages either obtained from in vitro differentiation of bone marrow cells or isolated from infarcted hearts altered their capacity of efferocytosis and subsequently blunted vascular endothelial growth factor A (VEGFA) release. Using LysMCre(+)/VEGFA(fl/fl) mice, we further identified an important role for myeloid-derived VEGFA in improving cardiac function and angiogenesis. CONCLUSIONS: After myocardial infarction, Mertk- and Mfge8-expressing monocyte/macrophages synergistically engage the clearance of injured cardiomyocytes, favoring the secretion of VEGFA to locally repair the dysfunctional heart.


Assuntos
Antígenos de Superfície/biossíntese , Proteínas do Leite/biossíntese , Infarto do Miocárdio/metabolismo , Proteínas Proto-Oncogênicas/biossíntese , Receptores Proteína Tirosina Quinases/biossíntese , Fator A de Crescimento do Endotélio Vascular/metabolismo , Remodelação Ventricular/fisiologia , Animais , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Infarto do Miocárdio/patologia , Fagocitose/fisiologia , Proteínas Proto-Oncogênicas/deficiência , Receptores Proteína Tirosina Quinases/deficiência , c-Mer Tirosina Quinase
15.
Arterioscler Thromb Vasc Biol ; 35(11): 2316-25, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26404487

RESUMO

OBJECTIVE: Although immune responses drive the pathogenesis of atherosclerosis, mechanisms that control antigen-presenting cell (APC)-mediated immune activation in atherosclerosis remain elusive. We here investigated the function of hypoxia-inducible factor (HIF)-1α in APCs in atherosclerosis. APPROACH AND RESULTS: We found upregulated HIF1α expression in CD11c(+) APCs within atherosclerotic plaques of low-density lipoprotein receptor-deficient (Ldlr(-/-)) mice. Conditional deletion of Hif1a in CD11c(+) APCs in high-fat diet-fed Ldlr(-/-) mice accelerated atherosclerotic plaque formation and increased lesional T-cell infiltrates, revealing a protective role of this transcription factor. HIF1α directly controls Signal Transducers and Activators of Transcription 3 (Stat3), and a reduced STAT3 expression was found in HIF1α-deficient APCs and aortic tissue, together with an upregulated interleukin-12 expression and expansion of type 1 T-helper (Th1) cells. Overexpression of STAT3 in Hif1a-deficient APCs in bone marrow reversed enhanced atherosclerotic lesion formation and reduced Th1 cell expansion in chimeric Ldlr(-/-) mice. Notably, deletion of Hif1a in LysM(+) bone marrow cells in Ldlr(-/-) mice did not affect lesion formation or T-cell activation. In human atherosclerotic lesions, HIF1α, STAT3, and interleukin-12 protein were found to colocalize with APCs. CONCLUSIONS: Our findings identify HIF1α to antagonize APC activation and Th1 T cell polarization during atherogenesis in Ldlr(-/-) mice and to attenuate the progression of atherosclerosis. These data substantiate the critical role of APCs in controlling immune mechanisms that drive atherosclerotic lesion development.


Assuntos
Células Apresentadoras de Antígenos/metabolismo , Aorta/metabolismo , Doenças da Aorta/metabolismo , Aterosclerose/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/deficiência , Linfócitos T Auxiliares-Indutores/metabolismo , Animais , Células Apresentadoras de Antígenos/imunologia , Aorta/imunologia , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/imunologia , Doenças da Aorta/patologia , Aterosclerose/genética , Aterosclerose/imunologia , Aterosclerose/patologia , Antígeno CD11c/genética , Antígeno CD11c/metabolismo , Doenças das Artérias Carótidas/metabolismo , Células Cultivadas , Técnicas de Cocultura , Dieta Hiperlipídica , Modelos Animais de Doenças , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Interleucina-12/metabolismo , Ativação Linfocitária , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Placa Aterosclerótica , Receptores de LDL/deficiência , Receptores de LDL/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Linfócitos T Auxiliares-Indutores/imunologia
16.
Angiogenesis ; 18(3): 347-59, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26026674

RESUMO

BACKGROUND: Endothelial colony forming cells (ECFC) represent a subpopulation of endothelial progenitor cells involved in endothelial repair. The activation of procoagulant mechanisms associated with the vascular wall's inflammatory responses to injury plays a crucial role in the induction and progression of atherosclerosis. However, little is known about ECFC proinflammatory potential. AIMS: To explore the role of the thrombin receptor PAR-1 proinflammatory effects on ECFC chemotaxis/recruitment capacity. METHODS AND RESULTS: The expression of 30 genes known to be associated with inflammation and chemotaxis was quantified in ECFC by real-time qPCR. PAR-1 activation with the SFLLRN peptide (PAR-1-ap) resulted in a significant increase in nine chemotaxis-associated genes expression, including CCL2 and CCL3 whose receptors are present on ECFC. Furthermore, COX-2 expression was found to be dramatically up-regulated consequently to PAR-1 activation. COX-2 silencing with the specific COX-2-siRNA also triggered down-regulation of the nine target genes. Conditioned media (c.m.) from control-siRNA- and COX-2-siRNA-transfected ECFC, stimulated or not with PAR-1-ap, were produced and tested on ECFC capacity to recruit leukocytes in vitro as well in the muscle of ischemic hindlimb in a preclinical model. The capacity of the c.m. from ECFC stimulated with PAR-1-ap to recruit leukocytes was abrogated when COX-2 gene expression was silenced in vitro (in terms of U937 cells migration and adhesion to endothelial cells) as well as in vivo. Finally, the postnatal vasculogenic stem cell derived from infantile hemangioma tumor (HemSC) incubated with PAR-1-ap increased leukocyte recruitment in Matrigel(®) implant. CONCLUSIONS: PAR-1 activation in ECFC increases chemotactic gene expression and leukocyte recruitment at ischemic sites through a COX-2-dependent mechanism.


Assuntos
Quimiotaxia , Ciclo-Oxigenase 2/metabolismo , Leucócitos/citologia , Receptor PAR-1/metabolismo , Células-Tronco/citologia , Animais , Aterosclerose/metabolismo , Meios de Cultivo Condicionados , Modelos Animais de Doenças , Progressão da Doença , Células Endoteliais/citologia , Sangue Fetal/citologia , Citometria de Fluxo , Regulação da Expressão Gênica , Hemangioma/imunologia , Humanos , Inflamação , Leucócitos/metabolismo , Masculino , Camundongos , Camundongos Nus , RNA Interferente Pequeno/metabolismo , Células U937
17.
Circ Res ; 117(3): 244-53, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-25991812

RESUMO

RATIONALE: Proinflammatory adaptive immune responses are recognized as major drivers of atherosclerotic lesion formation. Although CD8(+) T cells have recently been proposed as a proatherogenic cell subset, their full scope of actions remains to be elucidated. OBJECTIVE: We here addressed the contribution of CD8(+) T cells to monocyte trafficking in atherosclerosis. METHOD AND RESULTS: We observed that CD8(+) T cells express proinflammatory cytokines (interferon-γ, tumor necrosis factor-α, and interleukin-12) within atherosclerotic lesions and spleens of high-fat diet-fed low-density lipoprotein receptor-deficient (Ldlr(-/-)) mice. Antibody-mediated CD8(+) T-cell depletion in high-fat diet-fed Ldlr(-/-) mice decreased atherosclerotic plaque formation, associated with decreased macrophage accumulation within lesions. Despite a reduction in vascular chemokine (CC-motif) ligand 2 and chemokine (CXC-motif) ligand 1 expression, CD8(+) T-cell depletion did not directly affect monocyte recruitment to inflamed vessels. However, CD8(+) T-cell depletion decreased chemokine (CC-motif) ligand serum concentrations and circulating Ly6C(high) monocyte counts. We further evidenced that CD8(+) T-cell depletion decreased levels of mature monocytes and myeloid granulocyte-monocyte progenitors in the bone marrow and spleen of hypercholesterolemic mice, effects that were partially reproduced by interferon-γ neutralization, showing a role for interferon-γ. CONCLUSIONS: These data suggest that CD8(+) T cells promote atherosclerosis by controlling monopoiesis and circulating monocyte levels, which ultimately contributes to plaque macrophage burden without affecting direct monocyte recruitment, identifying this cell subset as a critical regulator of proatherogenic innate immune cell responses in atherosclerosis.


Assuntos
Antígenos Ly/análise , Aterosclerose/imunologia , Linfócitos T CD8-Positivos/imunologia , Monócitos/imunologia , Mielopoese/imunologia , Animais , Soro Antilinfocitário/uso terapêutico , Aterosclerose/etiologia , Medula Óssea/metabolismo , Medula Óssea/patologia , Linfócitos T CD8-Positivos/metabolismo , Estenose das Carótidas/imunologia , Estenose das Carótidas/patologia , Células Cultivadas , Quimiotaxia de Leucócito/imunologia , Citocinas/biossíntese , Citocinas/genética , Citocinas/metabolismo , Dieta Aterogênica/efeitos adversos , Gorduras na Dieta/toxicidade , Endarterectomia das Carótidas , Regulação da Expressão Gênica/imunologia , Humanos , Hipercolesterolemia/complicações , Hipercolesterolemia/etiologia , Interferon gama/fisiologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de LDL/deficiência , Receptores de LDL/genética
18.
Basic Res Cardiol ; 110(4): 34, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25947006

RESUMO

Atherosclerotic lesion-related thrombosis is the major cause of myocardial infarction and stroke, which together constitute the leading cause of mortality worldwide. The inflammatory response is considered as a predominant driving force in atherosclerotic plaque formation, growth and progression towards instability and rupture. Notably, accumulation of macrophages in the intima and emergence of a pro-inflammatory milieu are a characteristic feature of plaque progression, and these processes can be modulated by adaptive immune responses. Recently, novel evidences of onsite proliferation of macrophages in lesions and transdifferentiation of smooth muscle cells to macrophages have challenged the prevalent paradigm that macrophage accumulation mostly relies on recruitment of circulating monocytes to plaques. Furthermore, previously unrecognized roles of inflammatory cell subsets such as plasmacytoid dendritic cells, innate response activator B cells or CD8(+) T cells in atherosclerosis have emerged, as well as novel mechanisms by which regulatory T cells or natural killer T cells contribute to lesion formation. Here, we review and discuss these recent advances in our understanding of inflammatory processes in atherosclerosis.


Assuntos
Aterosclerose/imunologia , Macrófagos/fisiologia , Linfócitos T/imunologia , Animais , Movimento Celular , Polaridade Celular , Proliferação de Células , Células Dendríticas/imunologia , Humanos , Imunidade Inata , Lipoproteínas/metabolismo , Ativação Linfocitária
19.
Curr Opin Lipidol ; 25(5): 380-6, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25051497

RESUMO

PURPOSE OF REVIEW: We here highlight recent studies that in vivo demonstrate an involvement of microRNAs in atherosclerotic lesion formation and provide important preclinical evidence of their therapeutic targeting in atherosclerosis, with a particular focus on endothelial cells and macrophages. We also briefly discuss the emerging role of long noncoding RNAs herein. RECENT FINDINGS: Noncoding RNAs have received considerable attention as regulators of different cell types and functions that dictate the inflammatory response in atherosclerosis. In particular, microRNAs have emerged to control endothelial cell functions by acting as mechanosensors that are regulated by flow, determinants of inflammation in the context of cytokine exposure and hypercholesterolemia and guardians of endothelial homeostasis. In addition, microRNAs control macrophage-driven cytokine production and polarization, and regulate cholesterol metabolism and foam cell formation. By these (cell specific) effects, microRNAs contain or drive atherosclerotic lesion formation and progression in animal models of disease and can be harnessed for therapeutic targeting. SUMMARY: Given their multifaceted and specific contribution to vascular inflammation and atherosclerosis, and proven amenability for successful modulation in preclinical murine models of atheroscleorosis and large animal studies, miRNAs appear as promising therapeutic targets for treating atherosclerosis.


Assuntos
Aterosclerose/genética , Inflamação/genética , MicroRNAs/genética , RNA não Traduzido/genética , Animais , Aterosclerose/metabolismo , Aterosclerose/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Inflamação/metabolismo , Inflamação/patologia , Metabolismo dos Lipídeos/genética , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , RNA não Traduzido/metabolismo
20.
J Exp Med ; 210(12): 2611-25, 2013 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-24166715

RESUMO

Adult neovascularization relies on the recruitment of monocytes to the target organ or tumor and functioning therein as a paracrine accessory. The exact origins of the recruited monocytes and the mechanisms underlying their plasticity remain unclear. Using a VEGF-based transgenic system in which genetically tagged monocytes are conditionally summoned to the liver as part of a VEGF-initiated angiogenic program, we show that these recruited cells are derived from the abundant pool of circulating Ly6C(hi) monocytes. Remarkably, however, upon arrival at the VEGF-induced organ, but not the naive organ, monocytes undergo multiple phenotypic and functional changes, endowing them with enhanced proangiogenic capabilities and, importantly, with a markedly increased capacity to remodel existing small vessels into larger conduits. Notably, monocytes do not differentiate into long-lived macrophages, but rather appear as transient accessory cells. Results from transfers of presorted subpopulations and a novel tandem transfer strategy ruled out selective recruitment of a dedicated preexisting subpopulation or onsite selection, thereby reinforcing active reprogramming as the underlying mechanism for improved performance. Collectively, this study uncovered a novel function of VEGF, namely, on-site education of recruited "standard" monocytes to become angiogenic and arteriogenic professional cells, a finding that may also lend itself for a better design of angiogenic therapies.


Assuntos
Monócitos/fisiologia , Neovascularização Fisiológica , Fator A de Crescimento do Endotélio Vascular/fisiologia , Animais , Antígenos Ly/metabolismo , Aorta Torácica/citologia , Aorta Torácica/crescimento & desenvolvimento , Apoptose , Fígado/irrigação sanguínea , Fígado/citologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Camundongos Nus , Camundongos Transgênicos , Monócitos/classificação , Monócitos/citologia , Neovascularização Patológica , Comunicação Parácrina , Transcriptoma , Fator A de Crescimento do Endotélio Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA