Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant J ; 100(4): 677-692, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31325184

RESUMO

The accurate control of dormancy release and germination is critical for successful plantlet establishment. Investigations in cereals hypothesized a crucial role for specific MAP kinase (MPK) pathways in promoting dormancy release, although the identity of the MPK involved and the downstream events remain unclear. In this work, we characterized mutants for Arabidopsis thaliana MAP kinase 8 (MPK8). Mpk8 seeds presented a deeper dormancy than wild-type (WT) at harvest that was less efficiently alleviated by after-ripening and gibberellic acid treatment. We identified Teosinte Branched1/Cycloidea/Proliferating cell factor 14 (TCP14), a transcription factor regulating germination, as a partner of MPK8. Mpk8 tcp14 double-mutant seeds presented a deeper dormancy at harvest than WT and mpk8, but similar to that of tcp14 seeds. MPK8 interacted with TCP14 in the nucleus in vivo and phosphorylated TCP14 in vitro. Furthermore, MPK8 enhanced TCP14 transcriptional activity when co-expressed in tobacco leaves. Nevertheless, the stimulation of TCP14 transcriptional activity by MPK8 could occur independently of TCP14 phosphorylation. The comparison of WT, mpk8 and tcp14 transcriptomes evidenced that whereas no effect was observed in dry seeds, mpk8 and tcp14 mutants presented dramatic transcriptomic alterations after imbibition with a sustained expression of genes related to seed maturation. Moreover, both mutants exhibited repression of genes involved in cell wall remodeling and cell cycle G1/S transition. As a whole, this study unraveled a role for MPK8 in promoting seed germination, and suggested that its interaction with TCP14 was critical for regulating key processes required for germination completion.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Germinação/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fatores de Transcrição/metabolismo , Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/genética , Parede Celular/genética , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Giberelinas/farmacologia , Proteínas Quinases Ativadas por Mitógeno/genética , Mutação , Fosforilação , Dormência de Plantas/fisiologia , Plantas Geneticamente Modificadas , Sementes/efeitos dos fármacos , Sementes/fisiologia , Nicotiana/genética , Fatores de Transcrição/genética
2.
Front Plant Sci ; 7: 930, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27446159

RESUMO

Hydrogen sulfide (H2S) recently emerged as an important gaseous signaling molecule in plants. In this study, we investigated the possible functions of H2S in regulating Arabidopsis seed germination. NaHS treatments delayed seed germination in a dose-dependent manner and were ineffective in releasing seed dormancy. Interestingly, endogenous H2S content was enhanced in germinating seeds. This increase was correlated with higher activity of three enzymes (L-cysteine desulfhydrase, D-cysteine desulfhydrase, and ß-cyanoalanine synthase) known as sources of H2S in plants. The H2S scavenger hypotaurine and the D/L cysteine desulfhydrase inhibitor propargylglycine significantly delayed seed germination. We analyzed the germinative capacity of des1 seeds mutated in Arabidopsis cytosolic L-cysteine desulfhydrase. Although the mutant seeds do not exhibit germination-evoked H2S formation, they retained similar germination capacity as the wild-type seeds. In addition, des1 seeds responded similarly to temperature and were as sensitive to ABA as wild type seeds. Taken together, these data suggest that, although its metabolism is stimulated upon seed imbibition, H2S plays, if any, a marginal role in regulating Arabidopsis seed germination under standard conditions.

3.
Methods Mol Biol ; 1009: 145-61, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23681531

RESUMO

Phosphatidylinositol (PtdIns) synthase is a lipid-synthesizing enzyme responsible for the synthesis of the phospholipid, PtdIns. Its enzymatic properties have been studied in in vitro assays using either membrane-enriched fractions or the purified protein in reconstituted lipid vesicles as a source of enzyme. More recently the specificities in terms of substrate preferences have also been studied using the recombinant protein expressed in Escherichia coli. This chapter deals with the purification of membranes as a source of PtdIns synthase before focusing on the in vitro assays of the enzymatic activities of the protein and, briefly, on the analysis of the product.


Assuntos
CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferase/metabolismo , Membrana Celular/enzimologia , Ensaios Enzimáticos/métodos , Escherichia coli/metabolismo , Peptídeos/metabolismo , Proteínas Recombinantes/metabolismo , Arabidopsis/enzimologia , Frações Subcelulares/enzimologia
4.
Methods Mol Biol ; 639: 333-40, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20387057

RESUMO

Proline is a key factor in plant adaptation to environmental stresses. The Delta(1)-pyrroline-5-carboxylate synthetase catalyzes the first committed step and the rate-limiting step for proline biosynthesis in both plants and mammals. This enzyme catalyzes the reduction of glutamate to pyrroline-5-carboxylate in two sequential steps including the phosphorylation and the reduction of its precursor. Several methods were established to assay P5CS activity but however none of them are fully reliable. Therefore, we developed a new simple and reliable assay which is based on the quantification of Pi. This assay allowed us to determine the optimal pH, the apparent K(m) and V(m) of P5CS with regard to ATP and glutamate.


Assuntos
Arabidopsis/enzimologia , Ensaios Enzimáticos/métodos , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Trifosfato de Adenosina/metabolismo , Ácido Glutâmico/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Extratos Vegetais/metabolismo , Folhas de Planta/enzimologia , Solubilidade , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA