Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 13: 825207, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35493521

RESUMO

Upon encountering cognate antigen, B cells can differentiate into short-lived plasmablasts, early memory B cells or germinal center B cells. The factors that determine this fate decision are unclear. Past studies have addressed the role of B cell receptor affinity in this process, but the interplay with other cellular compartments for fate determination is less well understood. Moreover, B cell fate decisions have primarily been studied using model antigens rather than complex pathogen systems, which potentially ignore multifaceted interactions from other cells subsets during infection. Here we address this question using a Plasmodium infection model, examining the response of B cells specific for the immunodominant circumsporozoite protein (CSP). We show that B cell fate is determined in part by the organ environment in which priming occurs, with the majority of the CSP-specific B cell response being derived from splenic plasmablasts. This plasmablast response could occur independent of T cell help, though gamma-delta T cells were required to help with the early isotype switching from IgM to IgG. Interestingly, selective ablation of CD11c+ dendritic cells and macrophages significantly reduced the splenic plasmablast response in a manner independent of the presence of CD4 T cell help. Conversely, immunization approaches that targeted CSP-antigen to dendritic cells enhanced the magnitude of the plasmablast response. Altogether, these data indicate that the early CSP-specific response is predominately primed within the spleen and the plasmablast fate of CSP-specific B cells is driven by macrophages and CD11c+ dendritic cells.


Assuntos
Plasmócitos , Baço , Antígenos , Linfócitos B , Antígeno CD11c/metabolismo , Células Dendríticas , Macrófagos
2.
J Immunol ; 208(5): 1292-1304, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35131868

RESUMO

Pathogen-specific CD8 T cells face the problem of finding rare cells that present their cognate Ag either in the lymph node or in infected tissue. Although quantitative details of T cell movement strategies in some tissues such as lymph nodes or skin have been relatively well characterized, we still lack quantitative understanding of T cell movement in many other important tissues, such as the spleen, lung, liver, and gut. We developed a protocol to generate stable numbers of liver-located CD8 T cells, used intravital microscopy to record movement patterns of CD8 T cells in livers of live mice, and analyzed these and previously published data using well-established statistical and computational methods. We show that, in most of our experiments, Plasmodium-specific liver-localized CD8 T cells perform correlated random walks characterized by transiently superdiffusive displacement with persistence times of 10-15 min that exceed those observed for T cells in lymph nodes. Liver-localized CD8 T cells typically crawl on the luminal side of liver sinusoids (i.e., are in the blood); simulating T cell movement in digital structures derived from the liver sinusoids illustrates that liver structure alone is sufficient to explain the relatively long superdiffusive displacement of T cells. In experiments when CD8 T cells in the liver poorly attach to the sinusoids (e.g., 1 wk after immunization with radiation-attenuated Plasmodium sporozoites), T cells also undergo Lévy flights: large displacements occurring due to cells detaching from the endothelium, floating with the blood flow, and reattaching at another location. Our analysis thus provides quantitative details of movement patterns of liver-localized CD8 T cells and illustrates how structural and physiological details of the tissue may impact T cell movement patterns.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Movimento Celular/fisiologia , Fígado/imunologia , Malária/prevenção & controle , Plasmodium berghei/imunologia , Animais , Capilares/citologia , Microambiente Celular/fisiologia , Fígado/irrigação sanguínea , Malária/patologia , Camundongos , Plasmodium berghei/crescimento & desenvolvimento , Esporozoítos/crescimento & desenvolvimento , Esporozoítos/imunologia , Vacinação
3.
Cell Rep ; 35(2): 108996, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33852850

RESUMO

Antibodies targeting the NANP/NVDP repeat domain of the Plasmodium falciparum circumsporozoite protein (CSPRepeat) can protect against malaria. However, it has also been suggested that the CSPRepeat is a decoy that prevents the immune system from mounting responses against other domains of CSP. Here, we show that, following parasite immunization, B cell responses to the CSPRepeat are immunodominant over responses to other CSP domains despite the presence of similar numbers of naive B cells able to bind these regions. We find that this immunodominance is driven by avid binding of the CSPRepeat to cognate B cells that are able to expand at the expense of B cells with other specificities. We further show that mice immunized with repeat-truncated CSP molecules develop responses to subdominant epitopes and are protected against malaria. These data demonstrate that the CSPRepeat functions as a decoy, but truncated CSP molecules may be an approach for malaria vaccination.


Assuntos
Anticorpos Antiprotozoários/biossíntese , Imunização/métodos , Vacinas Antimaláricas/administração & dosagem , Malária/prevenção & controle , Peptídeos/administração & dosagem , Plasmodium berghei/efeitos dos fármacos , Proteínas de Protozoários/genética , Animais , Anopheles/parasitologia , Anticorpos Neutralizantes/biossíntese , Linfócitos B/imunologia , Linfócitos B/parasitologia , Feminino , Expressão Gênica , Malária/imunologia , Malária/parasitologia , Vacinas Antimaláricas/biossíntese , Vacinas Antimaláricas/genética , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/genética , Peptídeos/imunologia , Plasmodium berghei/imunologia , Plasmodium berghei/patogenicidade , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/imunologia , Plasmodium falciparum/patogenicidade , Ligação Proteica , Proteínas de Protozoários/imunologia , Esporozoítos/imunologia , Esporozoítos/efeitos da radiação , Transgenes , Vacinas Atenuadas
4.
ANZ J Surg ; 91(1-2): 27-32, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33421257

RESUMO

BACKGROUND: The study aimed to estimate the prevalence of active or previous SARS-CoV-2 infection in asymptomatic adults admitted for elective surgery in Australian hospitals. This surveillance activity was established as part of the National Pandemic Health Intelligence Plan. METHODS: Participants (n = 3037) were recruited from 11 public and private hospitals in four states (NSW, Vic, SA and WA) between 2 June and 17 July 2020, with an overall 66% participation rate. Presence of SARS-CoV-2 viral RNA was assessed by Reverse Transcriptase - Polymerase Chain Reaction (RT-PCR) analysis of nasopharyngeal swabs taken after induction of anaesthesia. Presence of anti-SARS-CoV-2 antibodies was assessed by analysis of serum collected at the same time using a novel dual-antigen ELISA assay. RESULTS: No patient (0/3010) returned a positive RT-PCR result. The Bayesian estimated prevalence of active infection of 0.02% (95% probability interval 0.00-0.11%), with the upper endpoint being 1 in 918. Positive serology (IgG) was observed in 15 of 2991 patients, with a strong positive in five of those individuals (Bayesian estimated seroprevalence 0.16%; 95% probability interval 0.00-0.47%). CONCLUSION: These results confirm that during periods of low community prevalence of SARS-CoV-2 elective surgery patients without fever or respiratory symptoms had a very low prevalence of active SARS-CoV-2 infection.


Assuntos
COVID-19/epidemiologia , Portador Sadio/epidemiologia , Procedimentos Cirúrgicos Eletivos , Hospitalização , Adulto , Idoso , Idoso de 80 Anos ou mais , Austrália , COVID-19/diagnóstico , Teste de Ácido Nucleico para COVID-19 , Teste Sorológico para COVID-19 , Portador Sadio/diagnóstico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Estudos Prospectivos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
J Infect Dis ; 223(1): 10-14, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33009908

RESUMO

Estimates of seroprevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies have been hampered by inadequate assay sensitivity and specificity. Using an enzyme-linked immunosorbent assay-based approach that combines data about immunoglobulin G responses to both the nucleocapsid and spike receptor binding domain antigens, we show that excellent sensitivity and specificity can be achieved. We used this assay to assess the frequency of virus-specific antibodies in a cohort of elective surgery patients in Australia and estimated seroprevalence in Australia to be 0.28% (95% Confidence Interval, 0-1.15%). These data confirm the low level of transmission of SARS-CoV-2 in Australia before July 2020 and validate the specificity of our assay.


Assuntos
Anticorpos Antivirais/análise , COVID-19/diagnóstico , Ensaio de Imunoadsorção Enzimática , Estudos Soroepidemiológicos , Antígenos Virais/imunologia , Austrália , COVID-19/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Humanos , Imunoglobulina G/análise , Fosfoproteínas/imunologia , Sensibilidade e Especificidade , Glicoproteína da Espícula de Coronavírus/imunologia
6.
Immunity ; 53(4): 733-744.e8, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32946741

RESUMO

Discovering potent human monoclonal antibodies (mAbs) targeting the Plasmodium falciparum circumsporozoite protein (PfCSP) on sporozoites (SPZ) and elucidating their mechanisms of neutralization will facilitate translation for passive prophylaxis and aid next-generation vaccine development. Here, we isolated a neutralizing human mAb, L9 that preferentially bound NVDP minor repeats of PfCSP with high affinity while cross-reacting with NANP major repeats. L9 was more potent than six published neutralizing human PfCSP mAbs at mediating protection against mosquito bite challenge in mice. Isothermal titration calorimetry and multiphoton microscopy showed that L9 and the other most protective mAbs bound PfCSP with two binding events and mediated protection by killing SPZ in the liver and by preventing their egress from sinusoids and traversal of hepatocytes. This study defines the subdominant PfCSP minor repeats as neutralizing epitopes, identifies an in vitro biophysical correlate of SPZ neutralization, and demonstrates that the liver is an important site for antibodies to prevent malaria.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antiprotozoários/imunologia , Antimaláricos/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Esporozoítos/imunologia , Adolescente , Adulto , Animais , Linhagem Celular , Linhagem Celular Tumoral , Epitopos/imunologia , Feminino , Células HEK293 , Hepatócitos/imunologia , Hepatócitos/parasitologia , Humanos , Fígado/imunologia , Fígado/parasitologia , Malária/imunologia , Malária/parasitologia , Vacinas Antimaláricas/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Adulto Jovem
7.
Cell Host Microbe ; 27(6): 950-962.e7, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32396839

RESUMO

Liver-resident memory CD8+ T (TRM) cells remain in and constantly patrol the liver to elicit rapid immunity upon antigen encounter and can mediate efficient protection against liver-stage Plasmodium infection. This finding has prompted the development of immunization strategies where T cells are activated in the spleen and then trapped in the liver to form TRM cells. Here, we identify PbRPL6120-127, a H2-Kb-restricted epitope from the putative 60S ribosomal protein L6 (RPL6) of Plasmodium berghei ANKA, as an optimal antigen for endogenous liver TRM cell generation and protection against malaria. A single dose vaccination targeting RPL6 provided effective and prolonged sterilizing immunity against high dose sporozoite challenges. Expressed throughout the parasite life cycle, across Plasmodium species, and highly conserved, RPL6 exhibits strong translation potential as a vaccine candidate. This is further advocated by the identification of a broadly conserved, immunogenic HLA-A∗02:01-restricted epitope in P. falciparum RPL6.


Assuntos
Antígenos de Protozoários/imunologia , Imunidade Celular/imunologia , Fígado/imunologia , Peptídeos/imunologia , Plasmodium berghei/imunologia , Proteínas Ribossômicas/imunologia , Animais , Anopheles , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular , Células Dendríticas/imunologia , Feminino , Imunização , Memória Imunológica/imunologia , Fígado/parasitologia , Malária/parasitologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Esporozoítos/imunologia
8.
Nature ; 547(7663): 318-323, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28700579

RESUMO

Protective high-affinity antibody responses depend on competitive selection of B cells carrying somatically mutated B-cell receptors by follicular helper T (TFH) cells in germinal centres. The rapid T-B-cell interactions that occur during this process are reminiscent of neural synaptic transmission pathways. Here we show that a proportion of human TFH cells contain dense-core granules marked by chromogranin B, which are normally found in neuronal presynaptic terminals storing catecholamines such as dopamine. TFH cells produce high amounts of dopamine and release it upon cognate interaction with B cells. Dopamine causes rapid translocation of intracellular ICOSL (inducible T-cell co-stimulator ligand, also known as ICOSLG) to the B-cell surface, which enhances accumulation of CD40L and chromogranin B granules at the human TFH cell synapse and increases the synapse area. Mathematical modelling suggests that faster dopamine-induced T-B-cell interactions increase total germinal centre output and accelerate it by days. Delivery of neurotransmitters across the T-B-cell synapse may be advantageous in the face of infection.


Assuntos
Linfócitos B/imunologia , Dopamina/metabolismo , Centro Germinativo/imunologia , Sinapses Imunológicas/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Animais , Linfócitos B/citologia , Linfócitos B/metabolismo , Ligante de CD40/metabolismo , Criança , Cromogranina B/metabolismo , Feminino , Centro Germinativo/citologia , Humanos , Ligante Coestimulador de Linfócitos T Induzíveis/metabolismo , Camundongos , Modelos Imunológicos , Neurotransmissores/metabolismo , Vesículas Secretórias/metabolismo , Linfócitos T Auxiliares-Indutores/citologia , Regulação para Cima
9.
Nat Commun ; 8: 14455, 2017 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-28205520

RESUMO

Apicomplexans are obligate intracellular parasites that scavenge essential nutrients from their hosts via transporter proteins on their plasma membrane. The identities of the transporters that mediate amino acid uptake into apicomplexans are unknown. Here we demonstrate that members of an apicomplexan-specific protein family-the Novel Putative Transporters (NPTs)-play key roles in the uptake of cationic amino acids. We show that an NPT from Toxoplasma gondii (TgNPT1) is a selective arginine transporter that is essential for parasite survival and virulence. We also demonstrate that a homologue of TgNPT1 from the malaria parasite Plasmodium berghei (PbNPT1), shown previously to be essential for the sexual gametocyte stage of the parasite, is a cationic amino acid transporter. This reveals a role for cationic amino acid scavenging in gametocyte biology. Our study demonstrates a critical role for amino acid transporters in the survival, virulence and life cycle progression of these parasites.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Apicomplexa/metabolismo , Parasitos/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo , Animais , Apicomplexa/crescimento & desenvolvimento , Arginina/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Feminino , Gametogênese/fisiologia , Estágios do Ciclo de Vida/fisiologia , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Oócitos/metabolismo , Parasitos/crescimento & desenvolvimento , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/crescimento & desenvolvimento , Toxoplasma/metabolismo
10.
Blood ; 128(9): 1290-301, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27465915

RESUMO

The factors that determine red blood cell (RBC) lifespan and the rate of RBC aging have not been fully elucidated. In several genetic conditions, including sickle cell disease, thalassemia, and G6PD deficiency, erythrocyte lifespan is significantly shortened. Many of these diseases are also associated with protection from severe malaria, suggesting a role for accelerated RBC senescence and clearance in malaria resistance. Here, we report a novel, N-ethyl-N-nitrosourea-induced mutation that causes a gain of function in adenosine 5'-monophosphate deaminase (AMPD3). Mice carrying the mutation exhibit rapid RBC turnover, with increased erythropoiesis, dramatically shortened RBC lifespan, and signs of increased RBC senescence/eryptosis, suggesting a key role for AMPD3 in determining RBC half-life. Mice were also found to be resistant to infection with the rodent malaria Plasmodium chabaudi. We propose that resistance to P. chabaudi is mediated by increased RBC turnover and higher rates of erythropoiesis during infection.


Assuntos
AMP Desaminase , Eritrócitos/imunologia , Imunidade Inata , Malária , Mutação , Plasmodium chabaudi/imunologia , AMP Desaminase/genética , AMP Desaminase/imunologia , Animais , Senescência Celular/genética , Senescência Celular/imunologia , Eritrócitos/parasitologia , Eritropoese/genética , Eritropoese/imunologia , Etilnitrosoureia/toxicidade , Meia-Vida , Malária/genética , Malária/imunologia , Masculino , Camundongos
11.
PLoS One ; 6(1): e15948, 2011 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-21245909

RESUMO

CD4(+) helper T cells are critical orchestrators of immune responses to infection and vaccination. During primary responses, naïve CD8(+) T cells may need "CD4 help" for optimal development of memory populations. The immunological factors attributed to CD4 help depend on the context of immunization and vary depending on the priming system. In response to immunization with radiation-attenuated Plasmodium yoelii sporozoites, CD8(+) T cells in BALB/c mice fail to generate large numbers of effector cells without help from CD4(+) T cells--a defect not observed in most systems. Given this unique early dependence on CD4 help, we evaluated the effects of CD4(+) cells on the development of functional properties of CD8(+) T cells and on their ability to abolish infection. First, we determined that this effect was not mediated by CD4(+) non-T cells and did not involve CD1d-restricted NKT cells. We found that CD8(+) T cells induced by sporozoites without CD4 help formed memory populations severely reduced in magnitude that could not limit parasite development in the liver. The inability of these "helpless" memory T cells to protect is not a result of defects in effector function, as their capacity to produce cytokines and undergo cytotoxic degranulation was indistinguishable from control memory T cells. These data indicate that CD4(+) T help may not be necessary to develop the functional attributes of CD8(+) T cells; however they are crucial to ensure the survival of effector and memory cells induced in primary responses.


Assuntos
Linfócitos T CD4-Positivos/parasitologia , Linfócitos T CD8-Positivos/parasitologia , Proliferação de Células , Sobrevivência Celular/imunologia , Esporozoítos/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Citotoxicidade Imunológica , Memória Imunológica/imunologia , Fígado/parasitologia , Malária/imunologia , Camundongos , Camundongos Endogâmicos BALB C
12.
Eur J Immunol ; 40(1): 124-33, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19830730

RESUMO

Synthetic peptides encoding protective pathogen-derived epitopes represent--in principle--an ideal approach to T-cell vaccination. Empirically, however, these strategies have not been successful. In the current study, we profiled the early activation of CD8+ T cells by MHC class I-restricted peptide immunization to better understand the biology of this response. We found that CD8+ T cells proliferated robustly in response to low doses of short synthetic peptides in PBS, but failed to acquire effector function or form memory populations in the absence of the TLR ligand CpG. CpG was unique among TLR ligands in its ability to enhance the response to peptide and its adjuvant effects had strict temporal requirements. Interestingly, CpG treatment modulated T-cell expression of the surface receptors PD-1 and CD25, providing insight into its possible adjuvant mechanism. The effects of CpG on peptide immunization were dramatically enhanced in the absence of B cells, demonstrating a unique system of regulation of T-cell responses by these lymphocytes. The results reported here provide insight into the complex response to a simple vaccination regimen, as well as a framework for a rational peptide-based vaccine design to both exploit and overcome targeted aspects of the immune response.


Assuntos
Linfócitos B/imunologia , Linfócitos T CD8-Positivos/imunologia , Ilhas de CpG , Antígenos de Histocompatibilidade Classe I/imunologia , Animais , Linfócitos T CD8-Positivos/citologia , Proliferação de Células , Feminino , Imunização , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Peptídeos/imunologia
13.
PLoS Pathog ; 5(5): e1000431, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19436710

RESUMO

Experimental visceral leishmaniasis (VL) represents an exquisite model to study CD8(+) T cell responses in a context of chronic inflammation and antigen persistence, since it is characterized by chronic infection in the spleen and CD8(+) T cells are required for the development of protective immunity. However, antigen-specific CD8(+) T cell responses in VL have so far not been studied, due to the absence of any defined Leishmania-specific CD8(+) T cell epitopes. In this study, transgenic Leishmania donovani parasites expressing ovalbumin were used to characterize the development, function, and fate of Leishmania-specific CD8(+) T cell responses. Here we show that L. donovani parasites evade CD8(+) T cell responses by limiting their expansion and inducing functional exhaustion and cell death. Dysfunctional CD8(+) T cells could be partially rescued by in vivo B7-H1 blockade, which increased CD8(+) T cell survival but failed to restore cytokine production. Nevertheless, B7-H1 blockade significantly reduced the splenic parasite burden. These findings could be exploited for the design of new strategies for immunotherapeutic interventions against VL.


Assuntos
Antígeno B7-1/metabolismo , Linfócitos T CD8-Positivos/imunologia , Leishmania donovani/patogenicidade , Leishmaniose Visceral/imunologia , Glicoproteínas de Membrana/metabolismo , Peptídeos/metabolismo , Animais , Animais Geneticamente Modificados , Antígenos CD/metabolismo , Antígeno B7-1/imunologia , Antígeno B7-H1 , Proliferação de Células , Clonagem Molecular , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Leishmania donovani/imunologia , Leishmaniose Visceral/parasitologia , Ativação Linfocitária , Glicoproteínas de Membrana/imunologia , Camundongos , Ovalbumina/imunologia , Fragmentos de Peptídeos/imunologia , Peptídeos/imunologia , Baço/parasitologia , Superinfecção , Vaccinia virus/genética , Vaccinia virus/imunologia
14.
Nat Med ; 13(9): 1035-41, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17704784

RESUMO

The success of immunization with irradiated sporozoites is unparalleled among the current vaccination approaches against malaria, but its mechanistic underpinnings have yet to be fully elucidated. Using a model mimicking natural infection by Plasmodium yoelii, we delineated early events governing the development of protective CD8(+) T-cell responses to the circumsporozoite protein. We demonstrate that dendritic cells in cutaneous lymph nodes prime the first cohort of CD8(+) T cells after an infectious mosquito bite. Ablation of these lymphoid sites greatly impairs subsequent development of protective immunity. Activated CD8(+) T cells then travel to systemic sites, including the liver, in a sphingosine-1-phosphate (S1P)-dependent fashion. These effector cells, however, no longer require bone marrow-derived antigen-presenting cells for protection; instead, they recognize antigen on parenchymal cells-presumably parasitized hepatocytes. Therefore, we report an unexpected dichotomy in the tissue restriction of host responses during the development and execution of protective immunity to Plasmodium.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Fígado/parasitologia , Linfonodos/imunologia , Malária/imunologia , Pele/imunologia , Animais , Antígenos de Protozoários/imunologia , Medula Óssea/imunologia , Humanos , Depleção Linfocítica , Camundongos , Plasmodium yoelii/imunologia , Esplenectomia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA