Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 18(1): e1009937, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35100259

RESUMO

Mammalian hearing involves the mechanoelectrical transduction (MET) of sound-induced fluid waves in the cochlea. Essential to this process are the specialised sensory cochlear cells, the inner (IHCs) and outer hair cells (OHCs). While genetic hearing loss is highly heterogeneous, understanding the requirement of each gene will lead to a better understanding of the molecular basis of hearing and also to therapeutic opportunities for deafness. The Neuroplastin (Nptn) gene, which encodes two protein isoforms Np55 and Np65, is required for hearing, and homozygous loss-of-function mutations that affect both isoforms lead to profound deafness in mice. Here we have utilised several distinct mouse models to elaborate upon the spatial, temporal, and functional requirement of Nptn for hearing. While we demonstrate that both Np55 and Np65 are present in cochlear cells, characterisation of a Np65-specific mouse knockout shows normal hearing thresholds indicating that Np65 is functionally redundant for hearing. In contrast, we find that Nptn-knockout mice have significantly reduced maximal MET currents and MET channel open probabilities in mature OHCs, with both OHCs and IHCs also failing to develop fully mature basolateral currents. Furthermore, comparing the hearing thresholds and IHC synapse structure of Nptn-knockout mice with those of mice that lack Nptn only in IHCs and OHCs shows that the majority of the auditory deficit is explained by hair cell dysfunction, with abnormal afferent synapses contributing only a small proportion of the hearing loss. Finally, we show that continued expression of Neuroplastin in OHCs of adult mice is required for membrane localisation of Plasma Membrane Ca2+ ATPase 2 (PMCA2), which is essential for hearing function. Moreover, Nptn haploinsufficiency phenocopies Atp2b2 (encodes PMCA2) mutations, with heterozygous Nptn-knockout mice exhibiting hearing loss through genetic interaction with the Cdh23ahl allele. Together, our findings provide further insight to the functional requirement of Neuroplastin for mammalian hearing.


Assuntos
Caderinas/genética , Células Ciliadas Auditivas Internas/fisiologia , Audição/genética , Glicoproteínas de Membrana/genética , Isoformas de Proteínas/genética , Animais , Mutação com Perda de Função , Camundongos , Camundongos Knockout , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo
2.
Nat Genet ; 49(8): 1231-1238, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28650483

RESUMO

Although next-generation sequencing has revolutionized the ability to associate variants with human diseases, diagnostic rates and development of new therapies are still limited by a lack of knowledge of the functions and pathobiological mechanisms of most genes. To address this challenge, the International Mouse Phenotyping Consortium is creating a genome- and phenome-wide catalog of gene function by characterizing new knockout-mouse strains across diverse biological systems through a broad set of standardized phenotyping tests. All mice will be readily available to the biomedical community. Analyzing the first 3,328 genes identified models for 360 diseases, including the first models, to our knowledge, for type C Bernard-Soulier, Bardet-Biedl-5 and Gordon Holmes syndromes. 90% of our phenotype annotations were novel, providing functional evidence for 1,092 genes and candidates in genetically uncharacterized diseases including arrhythmogenic right ventricular dysplasia 3. Finally, we describe our role in variant functional validation with The 100,000 Genomes Project and others.


Assuntos
Modelos Animais de Doenças , Técnicas de Inativação de Genes , Animais , Feminino , Doenças Genéticas Inatas , Predisposição Genética para Doença , Humanos , Masculino , Camundongos , Camundongos Knockout , Fenótipo
3.
Proc Natl Acad Sci U S A ; 110(23): 9547-52, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23690615

RESUMO

The suprachiasmatic nucleus (SCN) coordinates circadian rhythms that adapt the individual to solar time. SCN pacemaking revolves around feedback loops in which expression of Period (Per) and Cryptochrome (Cry) genes is periodically suppressed by their protein products. Specifically, PER/CRY complexes act at E-box sequences in Per and Cry to inhibit their transactivation by CLOCK/BMAL1 heterodimers. To function effectively, these closed intracellular loops need to be synchronized between SCN cells and to the light/dark cycle. For Per expression, this is mediated by neuropeptidergic and glutamatergic extracellular cues acting via cAMP/calcium-responsive elements (CREs) in Per genes. Cry genes, however, carry no CREs, and how CRY-dependent SCN pacemaking is synchronized remains unclear. Furthermore, whereas reporter lines are available to explore Per circadian expression in real time, no Cry equivalent exists. We therefore created a mouse, B6.Cg-Tg(Cry1-luc)01Ld, carrying a transgene (mCry1-luc) consisting of mCry1 elements containing an E-box and E'-box driving firefly luciferase. mCry1-luc organotypic SCN slices exhibited stable circadian bioluminescence rhythms with appropriate phase, period, profile, and spatial organization. In SCN lacking vasoactive intestinal peptide or its receptor, mCry1 expression was damped and desynchronized between cells. Despite the absence of CREs, mCry1-luc expression was nevertheless (indirectly) sensitive to manipulation of cAMP-dependent signaling. In mPer1/2-null SCN, mCry1-luc bioluminescence was arrhythmic and no longer suppressed by elevation of cAMP. Finally, an SCN graft procedure showed that PER-independent as well as PER-dependent mechanisms could sustain circadian expression of mCry1. The mCry1-luc mouse therefore reports circadian mCry1 expression and its interactions with vasoactive intestinal peptide, cAMP, and PER at the heart of the SCN pacemaker.


Assuntos
Ritmo Circadiano/fisiologia , Criptocromos/metabolismo , Retroalimentação Fisiológica/fisiologia , Proteínas Circadianas Period/metabolismo , Núcleo Supraquiasmático/fisiologia , Animais , AMP Cíclico/metabolismo , Primers do DNA/genética , Luciferases , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA