Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(21): e2402540121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38758698

RESUMO

All respiratory viruses establish primary infections in the nasal epithelium, where efficient innate immune induction may prevent dissemination to the lower airway and thus minimize pathogenesis. Human coronaviruses (HCoVs) cause a range of pathologies, but the host and viral determinants of disease during common cold versus lethal HCoV infections are poorly understood. We model the initial site of infection using primary nasal epithelial cells cultured at an air-liquid interface (ALI). HCoV-229E, HCoV-NL63, and human rhinovirus-16 are common cold-associated viruses that exhibit unique features in this model: early induction of antiviral interferon (IFN) signaling, IFN-mediated viral clearance, and preferential replication at nasal airway temperature (33 °C) which confers muted host IFN responses. In contrast, lethal SARS-CoV-2 and MERS-CoV encode antagonist proteins that prevent IFN-mediated clearance in nasal cultures. Our study identifies features shared among common cold-associated viruses, highlighting nasal innate immune responses as predictive of infection outcomes and nasally directed IFNs as potential therapeutics.


Assuntos
Resfriado Comum , Imunidade Inata , Interferons , Mucosa Nasal , SARS-CoV-2 , Transdução de Sinais , Humanos , Mucosa Nasal/virologia , Mucosa Nasal/imunologia , Mucosa Nasal/metabolismo , Interferons/metabolismo , Interferons/imunologia , Resfriado Comum/imunologia , Resfriado Comum/virologia , Transdução de Sinais/imunologia , SARS-CoV-2/imunologia , Replicação Viral , Rhinovirus/imunologia , Coronavirus Humano 229E/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Células Epiteliais/virologia , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Coronavirus Humano NL63/imunologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-38523260

RESUMO

OBJECTIVE: Relapses are frequent and difficult to predict in antineutrophil cytoplasmic antibody-associated vasculitis (AAV), resulting in long-term use of immunosuppression. Although sinonasal disease is associated with relapse of AAV, detailed characterization of sinonasal symptoms is lacking. Using a patient-reported outcome, the 22-item SinoNasal Outcome Test (SNOT-22), we investigated the relationship between sinonasal symptoms and disease activity in AAV. METHODS: This was a prospective, longitudinal study of individual with AAV and healthy individuals. Relapse was defined as a Birmingham Vasculitis Activity Score for Wegner's Granulomatosis score >0. Higher SNOT-22 scores indicate worse symptoms. Generalized estimating equation and Cox proportional hazard models evaluated the association between SNOT-22 and relapse. RESULTS: There were 773 visits (106 active disease visits) from 168 patients with AAV and 51 controls. Median SNOT-22 at remission was higher in AAV versus controls (20 vs 5; P < 0.001) and higher during active disease versus remission (P < 0.001). In all AAV, and particularly within granulomatosis with polyangiitis, higher SNOT-22 scores were observed months to years before relapse and were associated with increased risk of relapse (hazard ratio 2.7, 95% confidence interval 1.2-6.2; P = 0.02). Similar findings were seen when examining patients with versus without sinonasal disease and after removing relapses limited to the ear, nose, and throat. CONCLUSION: A patient-reported outcome measure of sinonasal disease, the SNOT-22, not only changes with disease activity in AAV, but also is associated with a higher risk of relapse within two years. These findings support the possibility that the SNOT-22 score may enhance prediction of relapse and that persistent sinonasal disease may be important in the pathophysiology of relapse.

3.
Mol Cell Proteomics ; 23(3): 100728, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38296025

RESUMO

Proteasomes are multisubunit, multicatalytic protein complexes present in eukaryotic cells that degrade misfolded, damaged, or unstructured proteins. In this study, we used an activity-guided proteomic methodology based on a fluorogenic peptide substrate to characterize the composition of proteasome complexes in WT yeast and the changes these complexes undergo upon the deletion of Pre9 (Δα3) or of Sem1 (ΔSem1). A comparison of whole-cell proteomic analysis to activity-guided proteasome profiling indicates that the amounts of proteasomal proteins and proteasome interacting proteins in the assembled active proteasomes differ significantly from their total amounts in the cell as a whole. Using this activity-guided profiling approach, we characterized the changes in the abundance of subunits of various active proteasome species in different strains, quantified the relative abundance of active proteasomes across these strains, and charted the overall distribution of different proteasome species within each strain. The distributions obtained by our mass spectrometry-based quantification were markedly higher for some proteasome species than those obtained by activity-based quantification alone, suggesting that the activity of some of these species is impaired. The impaired activity appeared mostly among 20SBlm10 proteasome species which account for 20% of the active proteasomes in WT. To identify the factors behind this impaired activity, we mapped and quantified known proteasome-interacting proteins. Our results suggested that some of the reduced activity might be due to the association of the proteasome inhibitor Fub1. Additionally, we provide novel evidence for the presence of nonmature and therefore inactive proteasomal protease subunits ß2 and ß5 in the fully assembled proteasomes.


Assuntos
Complexo de Endopeptidases do Proteassoma , Proteínas de Saccharomyces cerevisiae , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteômica , Proteínas , Peptídeos/química , Espectrometria de Massas , Saccharomyces cerevisiae/metabolismo
4.
J Vis Exp ; (199)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37811957

RESUMO

Three highly pathogenic human coronaviruses (HCoVs) - SARS-CoV (2002), MERS-CoV (2012), and SARS-CoV-2 (2019) - have emerged and caused significant public health crises in the past 20 years. Four additional HCoVs cause a significant portion of common cold cases each year (HCoV-NL63, -229E, -OC43, and -HKU1), highlighting the importance of studying these viruses in physiologically relevant systems. HCoVs enter the respiratory tract and establish infection in the nasal epithelium, the primary site encountered by all respiratory pathogens. We use a primary nasal epithelial culture system in which patient-derived nasal samples are grown at an air-liquid interface (ALI) to study host-pathogen interactions at this important sentinel site. These cultures recapitulate many features of the in vivo airway, including the cell types present, ciliary function, and mucus production. We describe methods to characterize viral replication, host cell tropism, virus-induced cytotoxicity, and innate immune induction in nasal ALI cultures following HCoV infection, using recent work comparing lethal and seasonal HCoVs as an example1. An increased understanding of host-pathogen interactions in the nose has the potential to provide novel targets for antiviral therapeutics against HCoVs and other respiratory viruses that will likely emerge in the future.


Assuntos
Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , Células Epiteliais , SARS-CoV-2 , Replicação Viral , Mucosa Nasal
5.
Cancer Discov ; 13(12): 2610-2631, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-37756565

RESUMO

Cancer mortality primarily stems from metastatic recurrence, emphasizing the urgent need for developing effective metastasis-targeted immunotherapies. To better understand the cellular and molecular events shaping metastatic niches, we used a spontaneous breast cancer lung metastasis model to create a single-cell atlas spanning different metastatic stages and regions. We found that premetastatic lungs are infiltrated by inflammatory neutrophils and monocytes, followed by the accumulation of suppressive macrophages with the emergence of metastases. Spatial profiling revealed that metastasis-associated immune cells were present in the metastasis core, with the exception of TREM2+ regulatory macrophages uniquely enriched at the metastatic invasive margin, consistent across both murine models and human patient samples. These regulatory macrophages (Mreg) contribute to the formation of an immune-suppressive niche, cloaking tumor cells from immune surveillance. Our study provides a compendium of immune cell dynamics across metastatic stages and niches, informing the development of metastasis-targeting immunotherapies. SIGNIFICANCE: Temporal and spatial single-cell analysis of metastasis stages revealed new players in modulating immune surveillance and suppression. Our study highlights distinct populations of TREM2 macrophages as modulators of the microenvironment in metastasis, and as the key immune determinant defining metastatic niches, pointing to myeloid checkpoints to improve therapeutic strategies. This article is featured in Selected Articles from This Issue, p. 2489.


Assuntos
Neoplasias da Mama , Neoplasias Pulmonares , Camundongos , Humanos , Animais , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias Pulmonares/patologia , Pulmão/patologia , Macrófagos , Microambiente Tumoral , Metástase Neoplásica/patologia , Glicoproteínas de Membrana , Receptores Imunológicos
6.
Cancer Res ; 83(20): 3354-3367, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37548552

RESUMO

Metastatic cancer is largely incurable and is the main cause of cancer-related deaths. The metastatic microenvironment facilitates formation of metastases. Cancer-associated fibroblasts (CAF) are crucial players in generating a hospitable metastatic niche by mediating an inflammatory microenvironment. Fibroblasts also play a central role in modifying the architecture and stiffness of the extracellular matrix (ECM). Resolving the early changes in the metastatic niche could help identify approaches to inhibit metastatic progression. Here, we demonstrate in mouse models of spontaneous breast cancer pulmonary metastasis that fibrotic changes and rewiring of lung fibroblasts occurred at premetastatic stages, suggesting systemic influence by the primary tumor. Activin A (ActA), a TGFß superfamily member, was secreted from breast tumors and its levels in the blood were highly elevated in tumor-bearing mice. ActA upregulated the expression of profibrotic factors in lung fibroblasts, leading to enhanced collagen deposition in the lung premetastatic niche. ActA signaling was functionally important for lung metastasis, as genetic targeting of ActA in breast cancer cells significantly attenuated lung metastasis and improved survival. Moreover, high levels of ActA in human patients with breast cancer were associated with lung metastatic relapse and poor survival. This study uncovers a novel mechanism by which breast cancer cells systemically rewire the stromal microenvironment in the metastatic niche to facilitate pulmonary metastasis. SIGNIFICANCE: ActA mediates cross-talk between breast cancer cells and cancer-associated fibroblasts in the lung metastatic niche that enhances fibrosis and metastasis, implicating ActA as a potential therapeutic target to inhibit metastatic relapse.

7.
Int Forum Allergy Rhinol ; 13(11): 2055-2062, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37189250

RESUMO

INTRODUCTION: Inverted papilloma (IP) is a sinonasal tumor with a well-known potential for malignant transformation. The role of human papillomavirus (HPV) in its pathogenesis has been controversial. The purpose of this study was to determine the virome associated with IP, with progression to carcinoma in situ (CIS), and invasive carcinoma. METHODS: To determine the HPV-specific types, a metagenomics assay that contains 62,886 probes targeting viral genomes in a microarray format was used. The platform screens DNA and RNA from fixed tissues from eight controls, 16 IP without dysplasia, five IP with CIS, and 13 IP-associated squamous cell carcinoma (IPSCC). Paired with next-generation sequencing, 48 types of HPV with 857 region-specific probes were interrogated against the tumors. RESULTS: The prevalence of HPV-16 was 14%, 42%, 70%, and 73% in control tissue, IP without dysplasia, IP with CIS, and IPSCC, respectively. The prevalence of HPV-18 had a similar progressive increase in prevalence, with 14%, 27%, 67%, and 74%, respectively. The assay allowed region-specific analysis, which identified the only oncogenic HPV-18 E6 to be statistically significant when compared with control tissue. The prevalence of HPV-18 E6 was 0% in control tissue, 25% in IP without dysplasia, 60% in IP with CIS, and 77% in IPSCC. CONCLUSIONS: There are over 200 HPV types that infect human epithelial cells, of which only a few are known to be high-risk. Our study demonstrated a trend of increasing prevalence of HPV-18 E6 that correlated with histologic severity, which is novel and supports a potential role for HPV in the pathogenesis of IP.

8.
Proc Natl Acad Sci U S A ; 120(15): e2218083120, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37023127

RESUMO

The nasal epithelium is the initial entry portal and primary barrier to infection by all human coronaviruses (HCoVs). We utilize primary human nasal epithelial cells grown at air-liquid interface, which recapitulate the heterogeneous cellular population as well as mucociliary clearance functions of the in vivo nasal epithelium, to compare lethal [Severe acute respiratory syndrome (SARS)-CoV-2 and Middle East respiratory syndrome-CoV (MERS-CoV)] and seasonal (HCoV-NL63 and HCoV-229E) HCoVs. All four HCoVs replicate productively in nasal cultures, though replication is differentially modulated by temperature. Infections conducted at 33 °C vs. 37 °C (reflective of temperatures in the upper and lower airway, respectively) revealed that replication of both seasonal HCoVs (HCoV-NL63 and -229E) is significantly attenuated at 37 °C. In contrast, SARS-CoV-2 and MERS-CoV replicate at both temperatures, though SARS-CoV-2 replication is enhanced at 33 °C late in infection. These HCoVs also diverge significantly in terms of cytotoxicity induced following infection, as the seasonal HCoVs as well as SARS-CoV-2 cause cellular cytotoxicity as well as epithelial barrier disruption, while MERS-CoV does not. Treatment of nasal cultures with type 2 cytokine IL-13 to mimic asthmatic airways differentially impacts HCoV receptor availability as well as replication. MERS-CoV receptor DPP4 expression increases with IL-13 treatment, whereas ACE2, the receptor used by SARS-CoV-2 and HCoV-NL63, is down-regulated. IL-13 treatment enhances MERS-CoV and HCoV-229E replication but reduces that of SARS-CoV-2 and HCoV-NL63, reflecting the impact of IL-13 on HCoV receptor availability. This study highlights diversity among HCoVs during infection of the nasal epithelium, which is likely to influence downstream infection outcomes such as disease severity and transmissibility.


Assuntos
COVID-19 , Coronaviridae , Coronavirus Humano 229E , Humanos , Interleucina-13/metabolismo , Estações do Ano , SARS-CoV-2 , Células Epiteliais
9.
Nat Cancer ; 4(3): 401-418, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36797502

RESUMO

Brain metastasis still encompass very grim prognosis and therefore understanding the underlying mechanisms is an urgent need toward developing better therapeutic strategies. We uncover the intricate interactions between recruited innate immune cells and resident astrocytes in the brain metastatic niche that facilitate metastasis of melanoma and breast cancer. We show that granulocyte-derived lipocalin-2 (LCN2) induces inflammatory activation of astrocytes, leading to myeloid cell recruitment to the brain. LCN2 is central to inducing neuroinflammation as its genetic targeting or bone-marrow transplantation from LCN2-/- mice was sufficient to attenuate neuroinflammation and inhibit brain metastasis. Moreover, high LCN2 levels in patient blood and brain metastases in multiple cancer types were strongly associated with disease progression and poor survival. Our findings uncover a previously unknown mechanism, establishing a central role for the reciprocal interactions between granulocytes and astrocytes in promoting brain metastasis and implicate LCN2 as a prognostic marker and potential therapeutic target.


Assuntos
Astrócitos , Neoplasias Encefálicas , Camundongos , Animais , Lipocalina-2/genética , Lipocalina-2/metabolismo , Astrócitos/metabolismo , Doenças Neuroinflamatórias , Neoplasias Encefálicas/genética , Imunidade Inata
10.
Int Forum Allergy Rhinol ; 13(8): 1525-1534, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36565436

RESUMO

BACKGROUND: Succinate, although most famous for its role in the Krebs cycle, can be released extracellularly as a signal of cellular distress, particularly in situations of metabolic stress and inflammation. Solitary chemosensory cells (SCCs) express SUCNR1, the succinate receptor, and modulate type 2 inflammatory responses in helminth and protozoal infections in the small intestine. SCCs are the dominant epithelial source of interleukin-25, as well as an important source of cysteinyl leukotrienes in the airway, and have been implicated as upstream agents in type 2 inflammation in chronic rhinosinusitis (CRS) and asthma. METHODS: In this study, we used scRNAseq analysis, live cell imaging of intracellular calcium from primary sinonasal air-liquid interface (ALI) cultures from 1 donor, and measure antimicrobial peptide release from 5 donors to demonstrate preliminary evidence suggesting that succinate can act as a stimulant of SCCs in the human sinonasal epithelium. RESULTS: Results from scRNAseq analysis show that approximately 10% of the SCC/ionocyte cluster of cells expressed SUCNR1 as well as a small population of immune cells. Using live cell imaging of intracellular calcium, we also demonstrate that clusters of cells on primary sinonasal ALI cultures initiated calcium-mediated signaling in response to succinate stimulation. Furthermore, we present evidence that primary sinonasal ALI cultures treated with succinate had increased levels of apical beta-defensin 2, an antimicrobial peptide, compared to treatment with a control solution. CONCLUSION: Overall, these findings demonstrate the need for further investigation into the activation of the sinonasal epithelium by succinate in the pathogenesis of CRS.


Assuntos
Rinite , Sinusite , Humanos , Ácido Succínico/metabolismo , Cálcio/metabolismo , Epitélio/metabolismo , Doença Crônica , Inflamação , Peptídeos Antimicrobianos , Células Epiteliais/metabolismo
11.
Elife ; 112022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36073526

RESUMO

While the lung bears significant regenerative capacity, severe viral pneumonia can chronically impair lung function by triggering dysplastic remodeling. The connection between these enduring changes and chronic disease remains poorly understood. We recently described the emergence of tuft cells within Krt5+ dysplastic regions after influenza injury. Using bulk and single-cell transcriptomics, we characterized and delineated multiple distinct tuft cell populations that arise following influenza clearance. Distinct from intestinal tuft cells which rely on Type 2 immune signals for their expansion, neither IL-25 nor IL-4ra signaling are required to drive tuft cell development in dysplastic/injured lungs. In addition, tuft cell expansion occurred independently of type I or type III interferon signaling. Furthermore, tuft cells were also observed upon bleomycin injury, suggesting that their development may be a general response to severe lung injury. While intestinal tuft cells promote growth and differentiation of surrounding epithelial cells, in the lungs of tuft cell deficient mice, Krt5+ dysplasia still occurs, goblet cell production is unchanged, and there remains no appreciable contribution of Krt5+ cells into more regionally appropriate alveolar Type 2 cells. Together, these findings highlight unexpected differences in signals necessary for murine lung tuft cell amplification and establish a framework for future elucidation of tuft cell functions in pulmonary health and disease.


Assuntos
Citocinas , Influenza Humana , Animais , Bleomicina , Células Caliciformes , Humanos , Pulmão , Camundongos
12.
J Asthma Allergy ; 15: 767-773, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35698581

RESUMO

Patients with asthma frequently have comorbid chronic rhinosinusitis (CRS) with or without nasal polyps, increasing disease burden and complicating treatment. These post hoc analyses investigated disease-specific health-related quality of life (HRQoL) and general health status in the randomized, placebo-controlled QUEST study (NCT02414854) in patients treated with dupilumab for moderate-to-severe asthma with comorbid CRS. Patients received 300 mg of dupilumab or placebo every 2 weeks for 52 weeks. CRS HRQoL was assessed by the 22-item Sino-Nasal Outcome Test (SNOT-22; items scored 0-5). The 22 items are categorized into 5 domains (nasal, ear/facial, sleep, function, and emotion), and patients report the top 5 most important items affecting their health. General health status was assessed by Euro-QoL visual analog scale (EQ-VAS). Of 1902 patients, 382 (20.1%) self-reported comorbid CRS; 193 patients receiving dupilumab 300 mg q2w or matched placebo were included in this analysis. At baseline, the most impacted SNOT-22 domain was nasal, and general health status was below population norms. Patients rated "decreased sense of taste/smell," "nasal blockage," "cough," "reduced productivity," and "wake up tired" as the 5 most important SNOT-22 items affecting their health. Percentage change from baseline in SNOT-22 total score was significantly greater for dupilumab vs placebo at Weeks 24, 36, and 52 (all p < 0.05). Improvements from baseline were significantly greater for dupilumab vs placebo at Week 52 for all SNOT-22 domains (p < 0.05), except emotion. At Week 52, significant changes from baseline with dupilumab vs placebo were observed for all 5 most important SNOT-22 items affecting their health (all p < 0.05). EQ-VAS was significantly improved with dupilumab vs placebo by Week 12, with improvements sustained to Week 52 (all p < 0.01). In patients with moderate-to-severe asthma who self-reported comorbid CRS, dupilumab treatment vs placebo improved CRS-specific HRQoL and general health status.

14.
Sci Rep ; 12(1): 8937, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35624283

RESUMO

Originally identified on the tongue for their chemosensory role, the receptors for sweet, umami, and bitter taste are expressed in some cancers where they regulate important cellular processes including apoptosis and proliferation. We examined DNA mutations (n = 5103), structural variation (n = 7545), and expression (n = 6224) of genes encoding sweet or umami receptors (TAS1Rs) and bitter receptors (TAS2Rs) in 45 solid tumors subtypes compared to corresponding normal tissue using The Cancer Genome Atlas and the Genotype Tissue Expression Project databases. Expression of TAS1R and TAS2R genes differed between normal and cancer tissue, and nonsilent mutations occurred in many solid tumor taste receptor genes (~ 1-7%). Expression levels of certain TAS1Rs/TAS2Rs were associated with survival differences in 12 solid tumor subtypes. Increased TAS1R1 expression was associated with improved survival in lung adenocarcinoma (mean survival difference + 1185 days, p = 0.0191). Increased TAS2R14 expression was associated with worse survival in adrenocortical carcinoma (-1757 days, p < 0.001) and esophageal adenocarcinoma (-640 days, p = 0.0041), but improved survival in non-papillary bladder cancer (+ 343 days, p = 0.0436). Certain taste receptor genes may be associated with important oncologic pathways and could serve as biomarkers for disease outcomes.


Assuntos
Neoplasias , Papilas Gustativas , Genômica , Humanos , Neoplasias/genética , Receptores Acoplados a Proteínas G/metabolismo , Paladar/genética , Papilas Gustativas/metabolismo
15.
Proc Natl Acad Sci U S A ; 119(21): e2123208119, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35594398

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) emerged into humans in 2012, causing highly lethal respiratory disease. The severity of disease may be, in part, because MERS-CoV is adept at antagonizing early innate immune pathways­interferon (IFN) production and signaling, protein kinase R (PKR), and oligoadenylate synthetase/ribonuclease L (OAS/RNase L)­activated in response to viral double-stranded RNA (dsRNA) generated during genome replication. This is in contrast to severe acute respiratory syndrome CoV-2 (SARS-CoV-2), which we recently reported to activate PKR and RNase L and, to some extent, IFN signaling. We previously found that MERS-CoV accessory proteins NS4a (dsRNA binding protein) and NS4b (phosphodiesterase) could weakly suppress these pathways, but ablation of each had minimal effect on virus replication. Here we investigated the antagonist effects of the conserved coronavirus endoribonuclease (EndoU), in combination with NS4a or NS4b. Inactivation of EndoU catalytic activity alone in a recombinant MERS-CoV caused little if any effect on activation of the innate immune pathways during infection. However, infection with recombinant viruses containing combined mutations with inactivation of EndoU and deletion of NS4a or inactivation of the NS4b phosphodiesterase promoted robust activation of dsRNA-induced innate immune pathways. This resulted in at least tenfold attenuation of replication in human lung­derived A549 and primary nasal cells. Furthermore, replication of these recombinant viruses could be rescued to the level of wild-type MERS-CoV by knockout of host immune mediators MAVS, PKR, or RNase L. Thus, EndoU and accessory proteins NS4a and NS4b together suppress dsRNA-induced innate immunity during MERS-CoV infection in order to optimize viral replication.


Assuntos
COVID-19 , Infecções por Coronavirus , Coronavírus da Síndrome Respiratória do Oriente Médio , Infecções por Coronavirus/imunologia , Endorribonucleases/genética , Endorribonucleases/metabolismo , Células Epiteliais/metabolismo , Humanos , Imunidade Inata , Pulmão/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Mucosa Nasal , SARS-CoV-2/patogenicidade , Endorribonucleases Específicas de Uridilato
16.
Ann Allergy Asthma Immunol ; 129(2): 160-168, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35398492

RESUMO

OBJECTIVE: Treatment for chronic rhinosinusitis with nasal polyps (CRSwNP) generally involves intranasal corticosteroids (INCS) and saline irrigation, followed by short courses of systemic corticosteroids (SCS) or surgery with postoperative medical therapy for patients who do not respond to INCS. However, both SCS use and surgery are associated with a range of adverse effects or complications, have a high recurrence rate, and are unsuitable for some patients. Biologics targeting the underlying pathophysiology are promising treatment alternatives for these patients. Dupilumab, omalizumab, and mepolizumab are approved for use in patients with severe, uncontrolled CRSwNP. However, the lack of a consistent definition of severe CRSwNP makes the decision to initiate biologic treatment particularly complex. Furthermore, the position of each biologic in the overall management of CRSwNP remains to be clarified. DATA SOURCES: Publications reporting results of phase III trials of dupilumab, omalizumab, mepolizumab, and benralizumab in the treatment of CRSwNP. STUDY SELECTIONS: Randomized, controlled phase III trials of biologics approved for CRSwNP. RESULTS: These trials all used different enrollment criteria. We discuss the complexities of assessing CRSwNP disease severity and highlight how these impact comparisons of the populations and outcomes of the phase III biologic trials. CONCLUSION: To position biologic agents appropriately within the existing CRSwNP treatment paradigm, future trials will need to include comparable patient populations and standardized outcome measures. Such trials will help to ensure that biologic treatment is targeted appropriately to support optimal clinical outcomes.


Assuntos
Produtos Biológicos , Pólipos Nasais , Rinite , Sinusite , Corticosteroides/uso terapêutico , Produtos Biológicos/uso terapêutico , Doença Crônica , Humanos , Pólipos Nasais/complicações , Omalizumab/uso terapêutico , Rinite/complicações , Sinusite/complicações
17.
Int Forum Allergy Rhinol ; 12(10): 1232-1241, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35032094

RESUMO

BACKGROUND: Patients with aspirin-exacerbated respiratory disease (AERD) are among the most challenging rhinologic patients to treat. AERD has a complex inflammatory milieu of lipid mediators and cytokines. In this study we evaluated cytokine differences in the complex AERD environment at the mucus, epithelial, and tissue levels. METHODS: Samples were acquired at the time of sinus surgery from 21 patients (seven steroid-treated, 14 untreated) with aspirin challenge-confirmed AERD. Three methods (sponge adsorption, epithelial brushing, tissue biopsy) were used to acquire samples from the respective sinus sampling sites (mucus, polyp epithelium, and full-thickness polyp) of each patient. We measured and compared 16 cytokine concentrations in AERD patients with or without prednisone treatment using the Luminex platform. RESULTS: In most sampling sites, IL-5, IL-6, IL-10, IL-13, IL-33, CCL20, and TNF-α were detected at higher concentrations than IFN-γ, IL-1ß, IL-17A, IL-4, IL-22, IL-17E/IL25, and GM-CSF. Each sampling site had a different pattern of cytokine levels, and except for IL-5 and IL-25 there was no correlation among sampling methods for each cytokine tested. The most notable and significant decreases in cytokines from those treated with prednisone were observed in the epithelium for IL-5, IL-10, IL-33, and IFN-γ. CONCLUSIONS: In the epithelial samples, type 2-associated cytokines IL-5 and IL-33, the anti-inflammatory cytokine IL-10, and IFN-γ were lower in AERD patients treated with prednisone. This work serves as a basis to assess therapeutic-induced mucosal cytokine responses in AERD and indicates that the site of cytokine measurement is an important consideration when assessing results.


Assuntos
Asma Induzida por Aspirina , Pólipos Nasais , Sinusite , Aspirina/efeitos adversos , Asma Induzida por Aspirina/tratamento farmacológico , Citocinas , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Humanos , Interleucina-10 , Interleucina-13 , Interleucina-17 , Interleucina-33 , Interleucina-4 , Interleucina-5 , Interleucina-6 , Lipídeos , Pólipos Nasais/tratamento farmacológico , Prednisona/uso terapêutico , Sinusite/induzido quimicamente , Fator de Necrose Tumoral alfa
18.
Int Forum Allergy Rhinol ; 12(2): 200-209, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34510780

RESUMO

BACKGROUND: Inverted papilloma (IP) is a sinonasal tumor with a well-known potential for malignant transformation. The purpose of this study was to identify the genes and pathways associated with IP, with progression to carcinoma-in-situ and invasive carcinoma. METHODS: To determine genes and molecular pathways that may indicate progression and correlate with histologic changes, we analyzed six IP without dysplasia, five IP with carcinoma-in-situ, and 13 squamous cell carcinoma ex-IP by targeted sequencing. The HTG EdgeSeq Oncology Biomarker Panel coupled with next-generation sequencing was used to evaluate 2560 transcripts associated with solid tumors. RESULTS: Progressive upregulation of 11 genes were observed (CALD1, COL1A1, COL3A1, COL4A2, COL5A2, FN1, ITGA5, LGALS1, MMP11, SERPINH1, SPARC) in the order of invasive carcinoma > carcinoma-in-situ > IP without dysplasia. When compared with IP without dysplasia, more genes are differentially expressed in invasive carcinoma than carcinoma-in-situ samples (341 downregulated/333 upregulated vs. 195 downregulated/156 upregulated). Gene set enrichment analysis determined three gene sets in common between the cohorts (epithelial mesenchymal transition, extracellular matrix organization, and coagulation). CONCLUSIONS: Progressive upregulation of genes specific to IP malignant degeneration has significant clinical implications. This panel of 11 genes will improve concordance of histologic classification, which can directly impact treatment and patient outcomes. Additionally, future studies on larger tumor sets may observe upregulation in the gene panel that preceded histologic changes, which may be useful for further risk stratification.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Nasais , Papiloma Invertido , Neoplasias dos Seios Paranasais , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Perfilação da Expressão Gênica , Humanos , Papiloma Invertido/genética , Papiloma Invertido/patologia , Neoplasias dos Seios Paranasais/patologia
19.
Am J Respir Cell Mol Biol ; 66(3): 252-259, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34784491

RESUMO

Tissue damage in the upper and lower airways caused by mechanical abrasion, noxious chemicals, or pathogenic organisms must be followed by rapid restorative processes; otherwise, persistent immunopathology and disease may ensue. This review will discuss evidence for the important role served by trefoil factor (TFF) family members in healthy and diseased airways of humans and rodents. Collectively, these peptides serve to both maintain and restore homeostasis through their regulation of the mucous layer and their control of cell motility, cell differentiation, and immune function in the upper and lower airways. We will also discuss important differences in which trefoil member tracks with homeostasis and disease between humans and mice, which poses a challenge for research in this area. Moreover, we discuss new evidence supporting newly identified receptor binding partners in the leucine-rich repeat and immunoglobulin-like domain-containing NoGo (LINGO) family in mediating the biological effects of TFF proteins in mouse models of epithelial repair and infection. Recent advances in our knowledge regarding TFF peptides suggest that they may be reasonable therapeutic targets in the treatment of upper and lower airway diseases of diverse etiologies. Further work understanding their role in airway homeostasis, repair, and inflammation will benefit from these newly uncovered receptor-ligand interactions.


Assuntos
Fatores Trefoil , Animais , Pulmão/metabolismo , Camundongos , Peptídeos/metabolismo , Proteínas , Fator Trefoil-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA