Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 8(8): 3526-3541, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35838679

RESUMO

Cyclic strain generated at the cell-material interface is critical for the engraftment of biomaterials. Mechanosensitive immune cells, macrophages regulate the host-material interaction immediately after implantation by priming the environment and remodeling ongoing regenerative processes. This study investigated the ability of mechanically active scaffolds to modulate macrophage function in vitro and in vivo. Remotely actuated magnetic scaffolds enhance the phenotype of murine classically activated (M1) macrophages, as shown by the increased expression of the M1 cell-surface marker CD86 and increased secretion of multiple M1 cytokines. When scaffolds were implanted subcutaneously into mice and treated with magnetic stimulation for 3 days beginning at either day 0 or day 5 post-implantation, the cellular infiltrate was enriched for host macrophages. Macrophage expression of the M1 marker CD86 was increased, with downstream effects on vascularization and the foreign body response. Such effects were not observed when the magnetic treatment was applied at later time points after implantation (days 12-15). These results advance our understanding of how remotely controlled mechanical cues, namely, cyclic strain, impact macrophage function and demonstrate the feasibility of using mechanically active nanomaterials to modulate the host response in vivo.


Assuntos
Macrófagos , Alicerces Teciduais , Animais , Materiais Biocompatíveis , Macrófagos/metabolismo , Camundongos , Fenótipo
2.
J Control Release ; 341: 431-442, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838607

RESUMO

Achievement of a high dose of drug in the tumor while minimizing its systemic side effects is one of the important features of an improved drug delivery system. Thus, developing responsive carriers for site-specific delivery of chemotherapeutic agents has become a main goal of research efforts. One of the known hallmarks of cancerous tumors is hypoxia, which offers a target for selective drug delivery. The stimuli-sensitive micellar system developed by us, (PEG-azobenzene-PEI-DOPE (PAPD) has proven to be effective in vitro. The proposed construct developed, PAPD, contains an azobenzene group as a hypoxia-sensitive moiety that triggers the shedding of the PEG layer from the nanoparticle surface under conditions of hypoxia to improve cellular uptake. Using microfluidics, we show significantly improved cellular association and penetration under hypoxia in both single cells and in a 3D tumor model. Employing an in vivo model, we demonstrate slower tumor growth that did not induce systemic side effects, including weight loss in an experimental animal model, when compared to the free drug treatment. This complex-in-nature but simple-in-design system for the simultaneous delivery of siRNA to silence the P-glycoprotein and doxorubicin with active tumor targeting and proven therapeutic efficacy represents a universal platform for the delivery of other hydrophobic chemotherapeutic agents and siRNA molecules which can be further modified.


Assuntos
Doxorrubicina , Hipóxia , Animais , Linhagem Celular Tumoral , Doxorrubicina/uso terapêutico , Micelas , RNA Interferente Pequeno/genética
3.
Acta Biomater ; 132: 473-488, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34153511

RESUMO

Cancer is driven by both genetic aberrations in the tumor cells and fundamental changes in the tumor microenvironment (TME). These changes offer potential targets for novel therapeutics, yet lack of in vitro 3D models recapitulating this complex microenvironment impedes such progress. Here, we generated several tumor-stroma scaffolds reflecting the dynamic in vivo breast TME, using a high throughput microfluidic system. Alginate (Alg) or alginate-alginate sulfate (Alg/Alg-S) hydrogels were used as ECM-mimics, enabling the encapsulation and culture of tumor cells, fibroblasts and immune cells (macrophages and T cells, of the innate and adaptive immune systems, respectively). Specifically, Alg/Alg-S was shown capable of capturing and presenting growth factors and cytokines with binding affinity that is comparable to heparin. Viability and cytotoxicity were shown to strongly correlate with the dynamics of cellular milieu, as well as hydrogel type. Using on-chip immunofluorescence, production of reactive oxygen species and apoptosis were imaged and quantitatively analyzed. We then show how macrophages in our microfluidic system were shifted from a proinflammatory to an immunosuppressive phenotype when encapsulated in Alg/Alg-S, reflecting in vivo TME dynamics. LC-MS proteomic profiling of tumor cells sorted from the TME scaffolds revealed upregulation of proteins involved in cell-cell interactions and immunomodulation in Alg/Alg-S scaffolds, correlating with in vivo findings and demonstrating the appropriateness of Alg/Alg-S as an ECM biomimetic. Finally, we show the formation of large tumor-derived vesicles, formed exclusively in Alg/Alg-S scaffolds. Altogether, our system offers a robust platform for quantitative description of the breast TME that successfully recapitulates in vivo patterns. STATEMENT OF SIGNIFICANCE: Cancer progression is driven by profound changes in both tumor cells and surrounding stroma. Here, we present a high throughput microfluidic system for the generation and analysis of dynamic tumor-stroma scaffolds, that mimic the complex in vivo TME cell proportions and compositions, constructing robust in vitro models for the study of the TME. Utilizing Alg/Alg-S as a bioinspired ECM, mimicking heparin's in vivo capabilities of capturing and presenting signaling molecules, we show how Alg/Alg-S induces complex in vivo-like responses in our models. Alg/Alg-S is shown here to promote dynamic protein expression patterns, that can serve as potential therapeutic targets for breast cancer treatment. Formation of large tumor-derived vesicles, observed exclusively in the Alg/Alg-S scaffolds suggests a mechanism for tumor survival.


Assuntos
Neoplasias da Mama , Microambiente Tumoral , Biomimética , Feminino , Humanos , Microfluídica , Proteômica
4.
Stem Cell Res ; 53: 102382, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34088011

RESUMO

Autophagy serves as a master regulator of cellular homeostasis. Hence, expectedly autophagic dysfunction has been documented in many diseases such as cancer, neurodegeneration and cardiovascular disorders. A novel homozygous mutation in PLEKHM2 gene (mPLEKHM2) resulted in dilated cardiomyopathy with left ventricular noncompaction (DCM-LVNC), probably as result of impaired autophagy due to disruption of lysosomal movement assisted by PLEKHM2. Here we report a generation of three iPSC lines, four clones originated from two patients with homozygous mPLEKHM2 and two from a heterozygote sibling. All generated lines highly expressed pluripotency markers, spontaneously differentiated into three germ layers, retained the mutation after reprogramming and displayed normal karyotypes.


Assuntos
Cardiomiopatia Dilatada , Cardiopatias Congênitas , Células-Tronco Pluripotentes Induzidas , Cardiomiopatia Dilatada/genética , Heterozigoto , Humanos , Irmãos
5.
Biofabrication ; 13(3)2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33440359

RESUMO

Replication of physiological oxygen levels is fundamental for modeling human physiology and pathology inin vitromodels. Environmental oxygen levels, applied in mostin vitromodels, poorly imitate the oxygen conditions cells experiencein vivo, where oxygen levels average ∼5%. Most solid tumors exhibit regions of hypoxic levels, promoting tumor progression and resistance to therapy. Though this phenomenon offers a specific target for cancer therapy, appropriatein vitroplatforms are still lacking. Microfluidic models offer advanced spatio-temporal control of physico-chemical parameters. However, most of the systems described to date control a single oxygen level per chip, thus offering limited experimental throughput. Here, we developed a multi-layer microfluidic device coupling the high throughput generation of 3D tumor spheroids with a linear gradient of five oxygen levels, thus enabling multiple conditions and hundreds of replicates on a single chip. We showed how the applied oxygen gradient affects the generation of reactive oxygen species (ROS) and the cytotoxicity of Doxorubicin and Tirapazamine in breast tumor spheroids. Our results aligned with previous reports of increased ROS production under hypoxia and provide new insights on drug cytotoxicity levels that are closer to previously reportedin vivofindings, demonstrating the predictive potential of our system.


Assuntos
Neoplasias da Mama , Microfluídica , Linhagem Celular Tumoral , Doxorrubicina , Feminino , Humanos , Hipóxia , Oxigênio , Esferoides Celulares
6.
Sci Rep ; 9(1): 14490, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601830

RESUMO

Deriving cell populations from human embryonic stem cells (hESCs) for cell-based therapy is considered a promising strategy to achieve functional cells, yet its translation to clinical practice depends on achieving fully defined differentiated cells. In this work, we generated a miRNA-responsive lethal mRNA construct that selectively induces rapid apoptosis in hESCs by expressing a mutant (S184del) Bax variant. Insertion of miR-499 target sites in the construct enabled to enrich hESC-derived cardiomyocytes (CMs) in culture. A deterministic non-linear model was developed and validated with experimental data, to predict the outcome for each treatment cycle and the number of treatment cycle repetitions required to achieve completely purified cTNT-positive cells. The enriched hESC-CMs displayed physiological sarcomere orientation, functional calcium handling and after transplantation into SCID-NOD mice did not form teratomas. The modular miRNA responsive lethal mRNA construct could be employed in additional directed differentiation protocols, by adjusting the miRNA to the specific cells of choice.


Assuntos
Diferenciação Celular/genética , MicroRNAs/genética , Organogênese/genética , Proteína X Associada a bcl-2/genética , Animais , Apoptose/genética , Linhagem Celular , Regulação da Expressão Gênica no Desenvolvimento , Genes Letais/genética , Vetores Genéticos/genética , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Camundongos , MicroRNAs/antagonistas & inibidores , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/transplante , RNA Mensageiro/genética
7.
Mol Ther Nucleic Acids ; 16: 378-390, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31003172

RESUMO

Successful gene therapy requires the development of suitable carriers for the selective and efficient delivery of genes to specific target cells, with minimal toxicity. In this work, we present a non-viral vector for gene delivery composed of biocompatible materials, CaCl2, plasmid DNA and the semi-synthetic anionic biopolymer alginate sulfate (AlgS), which spontaneously co-assembled to form nanoparticles (NPs). The NPs were characterized with a slightly anionic surface charge (Zeta potential [ζ] = -14 mV), an average size of 270 nm, and their suspension was stable for several days with no aggregation. X-ray photoelectron spectroscopy (XPS) validated their ternary composition, and it elucidated the molecular interactions among Ca2+, the plasmid DNA, and the AlgS. Efficient cellular uptake (>80%), associated with potent GFP gene expression (22%-35%), was observed across multiple cell types: primary rat neonatal cardiac fibroblasts, human breast cancer cell line, and human hepatocellular carcinoma cells. The uptake mechanism of the NPs was studied using imaging flow cytometry and shown to be via active, clathrin-mediated endocytosis, as chemical inhibition of this pathway significantly reduced EGFP expression. The NPs were cytocompatible and did not activate the T lymphocytes in human peripheral blood mononuclear cells. Proof of concept for the efficacy of these NPs as a carrier in cancer gene therapy was demonstrated for Diphtheria Toxin Fragment A (DT-A), resulting in abrogation of protein synthesis and cell death in the human breast cancer cell line. Collectively, our results show that the developed AlgS-Ca2+-plasmid DNA (pDNA) NPs may be used as an effective non-viral carrier for pDNA.

8.
Biomaterials ; 205: 11-22, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30901634

RESUMO

Implementing ovarian tissue engineering for the maturation of primordial follicles, the most abundant follicle population in the ovary, holds great potential for women fertility preservation. Here, we evaluated whether macroporous alginate scaffolds with affinity-bound bone morphogenetic protein-4 (BMP-4) could mimic the ovary microenvironment and support the culture and growth of primordial follicles seeded with supporting ovarian cells. Porcine primordial follicles developed in the alginate scaffolds up to the pre-antral stage within 21 days. Affinity-bound BMP-4 significantly contributed to follicular maturation, as evident by the 5-fold increase in the number of developing follicles and enhanced estradiol secretion in these cultures compared to when BMP-4 was added to cultures with no affinity binding. After 21 days in culture, an increase in GDF-9/AMH gene expression, which is correlated with follicular development, was statistically significant when BMP-4 was affinity bound, compared to all other scaffold groups. When developed in-vivo, after xeno-transplantation of the follicle devices supplemented with additional angiogenic factors, the follicles reached antral size and secreted hormones at levels leading to restoration of ovarian function in ovariectomized severe combined immunodeficiency (SCID) mice. Altogether, our results provide first affirmation for the applicability of macroporous alginate scaffolds as a suitable platform for promoting follicle maturation in-vitro and in-vivo, and lay the foundations for the advantageous use of affinity binding presentation of growth factors to cultured follicles.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Ovário/efeitos dos fármacos , Alicerces Teciduais/química , Alginatos/farmacologia , Animais , Proteína Morfogenética Óssea 4/farmacologia , Células Cultivadas , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Hormônios/sangue , Humanos , Camundongos , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/crescimento & desenvolvimento , Porosidade , Sulfatos/farmacologia , Suínos , Sobrevivência de Tecidos/efeitos dos fármacos
9.
Toxicol Appl Pharmacol ; 363: 72-78, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30468816

RESUMO

INTRODUCTION: Acetaminophen (APAP) intoxication is a major cause of acute liver failure. Alginate, an anionic polysaccharide, was previously shown as a macroporous scaffold, to reduce liver inflammation and sustain hepatic synthetic function, when implanted on liver remnant after extended partial hepatectomy. In the recent study we wanted to examine in a model of APAP intoxication the potential of a specially formulated alginate solution to prevent APAP toxicity. METHODS: Three alginate solutions from low (30-50 kDa, VLVG), medium (100 kDa, LVG54) and high (150 kDa, LVG150) molecular weights were examined. Mice were orally administered with the alginate solution before, with and after APAP administration and were compared to control mice which received vehicle only. All mice were euthanized 24 h after APAP administration. Liver enzyme, blood APAP, IL-6 and liver histology including Ki-67 proliferation, IgG necrosis and nitrotyrosine staining were studied. RESULTS: VLVG- treated mice presented low ALT levels while 20-40 fold increase was demonstrated in control mice. The effect of LVG solutions was marginal. Accordingly, liver histology was normal with no hepatocytes proliferation in the VLVG group while massive centrilobular necrosis, increased nitrotyrosine staining and high proliferation appeared in livers of control mice. APAP blood levels were comparable in the two groups. Treatment with VLVG was associated with prevention of increase of IL-6 serum levels. CONCLUSION: VLVG, a novel alginate solution, alleviated the liver toxicity and inhibited oncotic necrosis and related immune-mediated damage. VLVG may serve as a novel hepato-protector and prevent drug induced liver injury.


Assuntos
Acetaminofen/toxicidade , Alginatos/uso terapêutico , Analgésicos não Narcóticos/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Substâncias Protetoras/uso terapêutico , Acetaminofen/sangue , Administração Oral , Alanina Transaminase/sangue , Alginatos/farmacologia , Analgésicos não Narcóticos/sangue , Animais , Aspartato Aminotransferases/sangue , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Modelos Animais de Doenças , Humanos , Interleucina-6/sangue , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Necrose/sangue , Necrose/induzido quimicamente , Necrose/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia
10.
Nano Lett ; 18(9): 5885-5891, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30141949

RESUMO

MicroRNA-based therapy that targets cardiac macrophages holds great potential for treatment of myocardial infarction (MI). Here, we explored whether boosting the miRNA-21 transcript level in macrophage-enriched areas of the infarcted heart could switch their phenotype from pro-inflammatory to reparative, thus promoting resolution of inflammation and improving cardiac healing. We employed laser capture microdissection (LCM) to spatially monitor the response to this treatment in the macrophage-enriched zones. MiRNA-21 mimic was delivered to cardiac macrophages post MI by nanoparticles (NPs), spontaneously assembled due to the complexation of hyaluronan-sulfate with the nucleic acid mediated by calcium ion bridges, yielding slightly anionic NPs with a mean diameter of 130 nm. Following intravenous administration, the miRNA-21 NPs were targeted to cardiac macrophages at the infarct zone, elicited their phenotype switch from pro-inflammatory to reparative, promoted angiogenesis, and reduced hypertrophy, fibrosis and cell apoptosis in the remote myocardium. Our work thus presents a new therapeutic strategy to manipulate macrophage phenotype using nanoparticle delivery of miRNA-21 with a potential for use to attenuate post-MI remodeling and heart failure.


Assuntos
Ácido Hialurônico/análogos & derivados , MicroRNAs/administração & dosagem , Infarto do Miocárdio/terapia , Nanopartículas/química , Animais , Feminino , Técnicas de Transferência de Genes , Terapia Genética , Microdissecção e Captura a Laser , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos Endogâmicos C57BL , MicroRNAs/química , MicroRNAs/genética , MicroRNAs/uso terapêutico , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Miocárdio/patologia
11.
Biotechnol Bioeng ; 115(9): 2205-2216, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29873069

RESUMO

Osteochondral defects (OCDs) are conditions affecting both cartilage and the underlying bone. Since cartilage is not spontaneously regenerated, our group has recently developed a strategy of injecting bioactive alginate hydrogel into the defect for promoting endogenous regeneration of cartilage via presentation of affinity-bound transforming growth factor ß1 (TGF-ß1). As in vivo model systems often provide only limited insights as for the mechanism behind regeneration processes, here we describe a novel flow bioreactor for the in vitro modeling of the OCD microenvironment, designed to promote cell recruitment from the simulated bone marrow compartment into the hydrogel, under physiological flow conditions. Computational fluid dynamics modeling confirmed that the bioreactor operates in a relevant slow-flowing regime. Using a chemotaxis assay, it was shown that TGF-ß1 does not affect human mesenchymal stem cell (hMSC) chemotaxis in 2D culture. Accessible through live imaging, the bioreactor enabled monitoring and discrimination between erosion rates and profiles of different alginate hydrogel compositions, using green fluorescent protein-expressing cells. Mathematical modeling of the erosion front progress kinetics predicted the erosion rate in the bioreactor up to 7 days postoperation. Using quantitative real-time polymerase chain reaction of early chondrogenic markers, the onset of chondrogenic differentiation in hMSCs was detected after 7 days in the bioreactor. In conclusion, the designed bioreactor presents multiple attributes, making it an optimal device for mechanistical studies, serving as an investigational tool for the screening of other biomaterial-based, tissue engineering strategies.


Assuntos
Doenças das Cartilagens/terapia , Cartilagem Articular/fisiologia , Hidrogel de Polietilenoglicol-Dimetacrilato/administração & dosagem , Microscopia Intravital/métodos , Modelos Teóricos , Reatores Biológicos , Células Cultivadas , Quimiotaxia , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/fisiologia , Regeneração , Fator de Crescimento Transformador beta/metabolismo
12.
Basic Res Cardiol ; 113(1): 1, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29101484

RESUMO

Tissue development and homeostasis are dependent upon the concerted synthesis, maintenance, and degradation of extracellular matrix (ECM) molecules. Cardiac fibrosis is now recognized as a primary contributor to incidence of heart failure, particularly heart failure with preserved ejection fraction, wherein cardiac filling in diastole is compromised. Periostin is a cell-associated protein involved in cell fate determination, proliferation, tumorigenesis, and inflammatory responses. As a non-structural component of the ECM, secreted 90 kDa periostin is emerging as an important matricellular factor in cardiac mesenchymal tissue development. In addition, periostin's role as a mediator in cell-matrix crosstalk has also garnered attention for its association with fibroproliferative diseases in the myocardium, and for its association with TGF-ß/BMP signaling. This review summarizes the phylogenetic history of periostin, its role in cardiac development, and the major signaling pathways influencing its expression in cardiovascular pathology. Further, we provide a synthesis of the current literature to distinguish the multiple roles of periostin in cardiac health, development and disease. As periostin may be targeted for therapeutic treatment of cardiac fibrosis, these insights may shed light on the putative timing for application of periostin-specific therapies.


Assuntos
Doenças Cardiovasculares/metabolismo , Moléculas de Adesão Celular/metabolismo , Valvas Cardíacas/embriologia , Animais , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/genética , Matriz Extracelular/metabolismo , Coração/fisiologia , Humanos , Mesoderma/metabolismo , Família Multigênica , Domínios Proteicos , Regeneração
13.
J Control Release ; 266: 310-320, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-28987883

RESUMO

RNA interference (RNAi) has the potential to reversibly silence any gene with high efficiency and specificity. To fulfill the clinical potential of RNAi, delivery vehicles are required to transport the short interfering RNA (siRNA) to the site of action in the cells of target tissues. Here, we describe the features of novel liver-targeted siRNA nanoparticles (NPs), co-assembled due to the complexation of alginate sulfate (AlgS) with siRNA, mediated by calcium ions bridges (AlgS-Ca2+-siRNA NPs) and then bioconjugation of a targeting ligand onto the AlgS upon the NP surface. To gain insight into the complexation process and confirm AlgS accessibility on NP surface, we investigated different schemes for fabrication. All resulting NPs, independently of the component addition order, were of average size of 130-150nm, had surface charge of <-10mV, exhibited a similar atomic composition on their surface, were efficiently uptaken by HepG2 cells and induced approx. ~90% silencing of STAT3 gene. Ca2+ and AlgS concentrations in NPs affected cell uptake and gene silencing. Bioconjugation of N-acetylgalactosamine (GalNAc), a ligand to the asialoglycoprotein receptor (ASGPR) overexpressed on hepatocytes, was validated by XPS analysis and cell uptake by receptor-mediated mechanism. After intravenous (i.v.) injection to BALB/c mice, GalNAc-NPs were targeted to liver by a factor of ~3 with lesser renal clearance compared to non-targeted NPs. We foresee that the combined advantages of site-specific targeting and reversibility of the tri-component NPs as well as the simplicity of their fabrication make them an attractive system for targeted delivery of siRNA.


Assuntos
Acetilgalactosamina/administração & dosagem , Fígado/metabolismo , Nanopartículas/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Acetilgalactosamina/química , Acetilgalactosamina/farmacocinética , Alginatos/administração & dosagem , Alginatos/química , Alginatos/farmacocinética , Animais , Cálcio/administração & dosagem , Cálcio/química , Cálcio/farmacocinética , Sobrevivência Celular , Feminino , Inativação Gênica , Células Hep G2 , Humanos , Camundongos Endogâmicos BALB C , Nanopartículas/química , RNA Interferente Pequeno/farmacocinética , Eletricidade Estática
14.
Int J Pharm ; 515(1-2): 46-56, 2016 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-27720873

RESUMO

Ca2+-siRNA nanocomplexes represent a simple yet an effective platform for siRNA delivery into the cell cytoplasm, with subsequent successful siRNA-induced target gene silencing. Herein, we aimed to elucidate the roles played by calcium ions in siRNA nanocomplex formation, cell uptake, and endosomal escape. We investigated whether the replacement of Ca2+in the nanocomplex by other bivalent cations would affect their cell entry and subsequent gene silencing. Our results indicate that Mg2+ and Ba2+ lead to the formation of nanocomplexes of similar physical features (size=100nm, surface charge ζ=-8mV) as the Ca2+-siRNA nanocomplexes. Yet, these nanocomplexes were not uptaken by the cells to the same extent as those prepared with Ca2+, and siRNA-induced target gene silencing was not obtained. Cell internalization of Ca2+--siRNA nanocomplexes, examined by employing chemical inhibitors to clathrin-, caveolin- and dynamin-mediated endocytosis pathways, indicated the involvement of all mechanisms in the process. Inhibition of endosome acidification by bafilomycin completely abolished the siRNA-mediated silencing by Ca2+-siRNA nanocomplexes. Collectively, our results indicate that Ca2+ promotes cell internalization and rapid endosomal escape, thus leading to the efficient siRNA-induced target gene silencing elicited by the Ca2+-siRNA nanocomplexes.


Assuntos
Cálcio/metabolismo , Endossomos/metabolismo , Nanopartículas/metabolismo , RNA Interferente Pequeno/metabolismo , Animais , Cátions/metabolismo , Caveolinas/metabolismo , Linhagem Celular Tumoral , Clatrina/metabolismo , Dinaminas/metabolismo , Endocitose/fisiologia , Inativação Gênica/fisiologia , Camundongos , Interferência de RNA/fisiologia
15.
Acta Biomater ; 45: 196-209, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27523029

RESUMO

Enhancing vascularization of cell-transplantation devices is necessary for maintaining cell viability and integration within the host, but it also increases the risk of allograft rejection. Here, we investigated the feasibility of generating an immunoregulatory environment in a highly vascularized macroporous alginate scaffold by affinity-binding of the transforming growth factor-ß (TGF-ß) in a manner mimicking its binding to heparan sulfate. Using this device to transplant allofibroblasts under the kidney capsule resulted in the induction of local and peripheral TGF-ß-dependent immunotolerance, characterized by higher frequency of immature dendritic cells and regulatory T cells within the device and by markedly reduced allofibroblast-specific T-cell response in the spleen, thereby increasing the viability of the transplanted cells. Culturing whole splenocytes in the TGF-ß-bound scaffold indicated that the regulatory function of TGF-ß is IL-10-dependent. We thus demonstrate a novel platform for transplantation devices, designed to promote an immunoregulatory microenvironment suitable for cell transplantation and autoimmune regulation. STATEMENT OF SIGNIFICANCE: Allogeneic cell graft transplantation is a potentially optimal treatment for many clinical deficiencies. It is yet challenging to overcome chronic rejection without compromising host immunity to pathogens. We present the features and function of a cell transplantation device designed based on the principle of affinity binding of angiogenic and immunoregulatory factors to extracellular matrix in aim to achieve sustained release of these factors. We show that presentation of these factors in such manner generates the infrastructure for device vascularization and induces profound local allocell-specific tolerance, which then evokes peripheral T-cell tolerance. The tolerance is antigen specific, does not cause immune deficits and may thus serve to improve allocell survival as well as a platform to mitigate pathogenic autoimmunity.


Assuntos
Alginatos/química , Tolerância Imunológica/efeitos dos fármacos , Alicerces Teciduais/química , Fator de Crescimento Transformador beta/farmacologia , Animais , Microambiente Celular/efeitos dos fármacos , Fibroblastos/citologia , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Imunomodulação/efeitos dos fármacos , Interleucina-10/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células NIH 3T3 , Neovascularização Fisiológica/efeitos dos fármacos , Porosidade , Baço/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Transplante Homólogo
16.
J Control Release ; 232: 215-27, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27117458

RESUMO

Therapeutic implementation of RNA interference (RNAi) through delivery of short interfering RNA (siRNA) is still facing several critical hurdles, which mostly can be solved through the use of an efficient delivery system. We hereby introduce anionic siRNA nanoparticles (NPs) co-assembled by the electrostatic interactions of the semi-synthetic polysaccharide hyaluronan-sulfate (HAS), with siRNA, mediated by calcium ion bridges. The NPs have an average size of 130nm and a mild (-10mV) negative surface charge. Transmission electron microscopy (TEM) using gold-labeled components and X-ray photoelectron spectroscopy (XPS) demonstrated the spatial organization of siRNA molecules in the particle core, surrounded by a layer of HAS. The anionic NPs efficiently encapsulated siRNA, were stable in physiological-relevant environments and were cytocompatible, not affecting cell viability or homeostasis. Efficient cellular uptake of the anionic siRNA NPs, associated with potent gene silencing (>80%), was observed across multiple cell types, including murine primary peritoneal macrophages and human hepatocellular carcinoma cells. In a clinically-relevant model of acute inflammatory response in IL-6-stimulated human hepatocytes, STAT3 silencing induced by HAS-Ca(2+)-siRNA NPs resulted in marked decrease in the total and activated STAT3 protein levels, as well as in the expression levels of downstream acute phase response genes. Collectively, anionic NPs prove to be an efficient and cytocompatible delivery system for siRNA.


Assuntos
Cálcio/metabolismo , Ácido Hialurônico/administração & dosagem , Nanopartículas/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Células Cultivadas , Fibroblastos/metabolismo , Inativação Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hepatócitos/metabolismo , Humanos , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Fator de Transcrição STAT3/genética
17.
Tissue Eng Part B Rev ; 22(4): 322-9, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26861485

RESUMO

Mesenchymal stromal/stem cells (MSCs) have been investigated extensively through the past years, proving to have great clinical therapeutic potential. In vitro cultivation of MSCs in three-dimensional (3D) culture systems, such as scaffolds, hydrogels, or spheroids, have recently gained attention for tissue engineering applications. Studies on MSC spheroids demonstrated that such cultivation increased the paracrine immunomodulatory potential of the MSCs, accompanied by phenotypic alterations. In this review, we gather results from recent experimental studies on the immunomodulatory abilities of MSCs when cultured as spheroids or in biomaterials like scaffolds or hydrogels compared to regular two-dimensional (2D) culture and show that alterations occurring to MSCs in spheroids also occur in MSCs in biomaterials. We provide a brief description of known mechanisms of MSC immunomodulatory capacity and how they are altered in the two 3D culture systems, together with phenotypic cellular changes. Based on the present knowledge, we highlight vital areas in need of further investigation. The impact of 3D environments on immunomodulation has great potential for tissue engineering and cellular therapy, and this is the first review to gather this knowledge with a comparison across different 3D environments.


Assuntos
Células-Tronco Mesenquimais , Materiais Biocompatíveis , Técnicas de Cultura de Células , Células Cultivadas , Hidrogéis , Imunomodulação , Engenharia Tecidual
18.
Adv Drug Deliv Rev ; 96: 54-76, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25962984

RESUMO

Alginate biomaterial is widely utilized for tissue engineering and regeneration due to its biocompatibility, non-thrombogenic nature, mild and physical gelation process, and the resemblance of its hydrogel matrix texture and stiffness to that of the extracellular matrix. In this review, we describe the versatile biomedical applications of alginate, from its use as a supporting cardiac implant in patients after acute myocardial infarction (MI) to its employment as a vehicle for stem cell delivery and for the controlled delivery and presentation of multiple combinations of bioactive molecules and regenerative factors into the heart. Preclinical and first-in-man clinical trials are described in details, showing the therapeutic potential of injectable acellular alginate implants to inhibit the damaging processes after MI, leading to myocardial repair and tissue reconstruction.


Assuntos
Alginatos/uso terapêutico , Materiais Biocompatíveis/uso terapêutico , Coração/efeitos dos fármacos , Infarto do Miocárdio/terapia , Phaeophyceae/química , Engenharia Tecidual/métodos , Alginatos/administração & dosagem , Alginatos/química , Animais , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/química , Ensaios Clínicos como Assunto , Coração/fisiologia , Humanos , Hidrogéis , Infarto do Miocárdio/tratamento farmacológico , Regeneração , Transplante de Células-Tronco , Células-Tronco/citologia
19.
Cytotherapy ; 17(8): 1104-18, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26031743

RESUMO

BACKGROUND AIMS: Clinical trials have documented beneficial effects of mesenchymal stromal cells from bone marrow and adipose tissue (ASCs) as treatment in patients with ischemic heart disease. However, retention of transplanted cells is poor. One potential way to increase cell retention is to inject the cells in an in situ cross-linked alginate hydrogel. METHODS: ASCs from abdominal human tissue were embedded in alginate hydrogel and alginate hydrogel modified with Arg-Gly-Asp motifs (RGD-alginate) and cultured for 1 week. Cell viability, phenotype, immunogenicity and paracrine activity were determined by confocal microscopy, dendritic cell co-culture, flow cytometry, reverse transcriptase quantitative polymerase chain reaction, Luminex multiplex, and lymphocyte proliferation experiments. RESULTS: ASCs performed equally well in alginate and RGD-alginate. After 1 week of alginate culture, cell viability was >93%. Mesenchymal markers CD90 and CD29 were reduced compared with International Society for Cellular Therapy criteria. Cells sedimented from the alginates during cultivation regained the typical level of these markers, and trilineage differentiation was performed by standard protocols. Hepatocyte growth factor mRNA was increased in ASCs cultivated in alginates compared with monolayer controls. Alginates and alginates containing ASCs did not induce dendritic cell maturation. ASCs in alginate responded like controls to interferon-gamma stimulation (licensing), and alginate culture increased the ability of ASCs to inhibit lymphocyte proliferation. DISCUSSION: ASCs remain viable in alginates; they transiently change phenotype in alginate hydrogel but regain the phenotype of monolayer controls upon release. Cells maintain their paracrine potential while in alginates; the combination of ASCs and alginate is non-immunogenic and, in fact, immunosuppressive.


Assuntos
Tecido Adiposo/citologia , Alginatos/administração & dosagem , Hidrogel de Polietilenoglicol-Dimetacrilato/administração & dosagem , Transplante de Células-Tronco Mesenquimais/métodos , Inclusão do Tecido/métodos , Adipócitos/química , Adulto , Idoso , Idoso de 80 Anos ou mais , Alginatos/química , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Técnicas de Cocultura , Feminino , Ácido Glucurônico/administração & dosagem , Ácido Glucurônico/química , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Ácidos Hexurônicos/administração & dosagem , Ácidos Hexurônicos/química , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Imunomodulação , Interferon gama/metabolismo , Masculino , Células-Tronco Mesenquimais/citologia , Pessoa de Meia-Idade , Oligopeptídeos/química , RNA Mensageiro/genética , Adulto Jovem
20.
J Control Release ; 203: 150-60, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25702963

RESUMO

Gene silencing using small interfering RNA (siRNA) relies on the critical need for a safe and effective carrier, capable of strong but reversible complexation, siRNA protection, cellular uptake, and cytoplasmatic unloading of its cargo. We hypothesized that a delivery platform based on the eletrostatic interactions of siRNA with calcium ions in solution would fulfill these needs, ultimately leading to effective gene silencing. Physical characterization of the calcium-siRNA complexes, using high resolution microscopy and dynamic light scattering (DLS), showed the formation of stable nanosized complexes ~80nm in diameter, bearing mild (~-7mV) negative surface charge. The complexes were extremely stable in the presence of serum proteins or high concentrations of heparin; they maintained their nanosized features in suspension for days; and effectively protected the siRNA from enzymatic degradation. The Ca-siRNA complexes were disintegrated in the presence of Ca-chelating ion exchange resin, thus proving their reversibility. Excellent cytocompatibility of calcium-siRNA complexes was achieved using physiological calcium ion concentrations. The calcium-siRNA complexes successfully induced a very high (~80%) level of gene silencing in several cell types, at both mRNA and protein levels, associated with efficient cellular uptake. Collectively, our results show that the developed delivery platform based on reversible calcium-siRNA interactions offers a simple and versatile method for enhancing the therapeutic efficiency of siRNA.


Assuntos
Cálcio/metabolismo , Complexos de Coordenação/metabolismo , Portadores de Fármacos/metabolismo , Interferência de RNA , RNA Interferente Pequeno/administração & dosagem , Transfecção/métodos , Animais , Cálcio/química , Quelantes de Cálcio/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Complexos de Coordenação/química , Portadores de Fármacos/química , Camundongos Endogâmicos BALB C , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA